

Exceptional Families of Elements for Continuous Functions: Some Applications to Complementarity Theory

G. ISAC^{1,*} and A. CARBONE²

 ¹Department of Mathematics and Computer Science, Royal Military College of Canada, P.O. Box 17000 STN Forces, Kingston, Ontario Canada, K7K 7B4
 ²Dipartimento di Matematica, Universita degli studi della Calabria, 87036 Arcavacata di Rende (Cosenza) Italy

(Received 20 July 1997; accepted in revised form 15 December 1998)

Abstract. Using the topological degree and the concept of exceptional family of elements for a continuous function, we prove a very general existence theorem for the nonlinear complementarity problem. This result is an alternative theorem. A generalization of Karamardian's condition and the asymptotic monotonicity are also introduced. Several applications of the main results are presented.

Key words: Exceptional family of elements, Complementarity problem and the fixed point theory

1. Introduction

Initially, a notion of "exceptional family of elements" for a continuous function was introduced in 1984 by T. E. Smith, using a special property of projection operator onto a closed convex set in the Euclidean space (\mathbb{R}^n , \langle , \rangle) [21]. Recently, using the topological degree, a more general notion of *exceptional family of elements* was introduced by G. Isac, V. Bulavski and V. V. Kalashnikov [11, 13]. Using this notion, in [11] are presented some *alternative existence theorems* for complementarity problems. A consequence of these results is the fact that, given a closed convex cone **K** in \mathbb{R}^n and a continuous function $f : \mathbb{R}^n \to \mathbb{R}^n$, to conclude that the complementarity problem $CP(f, \mathbf{K})$ associated with f and **K** has a solution, it is sufficient to show that f is without exceptional families of elements with respect **K**. It follows that it is interesting to know under what conditions a function is without exceptional families of elements with respect to a convex cone. This problem has been studied in [11–13, 25–27]. Now, in this paper we present some new conditions which imply that a function is without exceptional families of elements. As applications, we present a few existence theorems for complementarity problems, a generalization

^{*} The results presented in this paper were obtained when the first author was visiting professor (May-06-Jun 06-1997) at the University of Calabria (Cosenza, Italy) supported by the National Council of Research of Italy.

of Altman's fixed point theorem and an existence result for the complementarity problem associated to a P_0 -function and applicable to the study of the solvability of the generalized complementarity problem in the sense of Cottle and Dantzig [3, 10, 20, 22]. We note that the complementarity theory has many and interesting applications in Optimization, Economics, Game Theory, Engineering, Mechanics etc. [2, 3, 6, 9, 13, 21, 24]. Finally, we note that the concept of exceptional families of elements recently, has been extended for variational inequalities in [25–27]. The results presented in this paper can be considered as a complementary part of the papers [11–13], [25–27].

2. Preliminaries

Let $(\mathbf{R}^n, <, >)$ be the Euclidean space and $\mathbf{K} \subset \mathbf{R}^n$ a closed pointed convex cone, i.e., **K** is a non-empty closed set satisfying the following properties:

- $\mathbf{k}_1) \, \mathbf{K} + \mathbf{K} \subseteq \mathbf{K}$
- $k_2) \lambda \mathbf{K} \subseteq \mathbf{K} \text{ for all } \lambda \in \mathbf{R}_+,$
- $\mathbf{k}_3) \, \mathbf{K} \cap (-\mathbf{K}) = \{0\}.$

Whenever a closed pointed convex cone $\mathbf{K} \subset E$ is defined, we have an ordering on *E* defined by $x \leq y$, if and only if $y - x \in \mathbf{K}$. By definition the dual of **K** is

$$\mathbf{K}^* = \{ y \in \mathbf{R}^n | \langle x, y \rangle \ge 0 \text{ for all } x \in \mathbf{K} \}$$

If $D \subset \mathbf{R}^n$ is a closed convex set we denote the projection onto D by P_D , that is, for every $x \in \mathbf{R}^n$, $P_D(x)$ is the unique element in D satisfying

$$||x - P_D(x)|| = \min_{y \in D} ||x - y||.$$

In particular if $\mathbf{K} \subset \mathbf{R}^n$ is a closed convex cone we denote the projection onto **K** by $P_{\mathbf{K}}$.

We recall that the projection $P_{\mathbf{K}}$ onto a closed convex cone \mathbf{K} is characterized by the following properties. For every $x \in \mathbf{R}^n$, $P_{\mathbf{K}}(x)$ is the (unique) element in \mathbf{K} satisfying the following conditions:

- (i) $\langle P_K(x) x, y \rangle \ge 0$ for all $y \in \mathbf{K}$,
- (ii) $\langle P_K(x) x, P_K(x) \rangle = 0.$

If **K** and **Q** are two closed convex cones in \mathbb{R}^n , we say that **K** and **Q** are *mutually polar* if $\mathbf{K} = \mathbf{Q}^0$, where \mathbf{Q}^0 is the *polar* of **Q**, that is,

$$\mathbf{Q}^0 = \{x \in \mathbf{R}^n | \langle x, y \rangle \leq 0 \text{ for all } y \in \mathbf{Q} \}$$

We will use the following classical result.

THEOREM (Moreau [16]). If **K** and **Q** are two mutually polar convex cones in the Euclidean space (\mathbf{R}^n , <, >) and $x, y, z \in \mathbf{R}^n$, then the following statements are equivalent:

(iii) z = x + y; $x \in \mathbf{K}$, $y \in \mathbf{Q}$ and $\langle x, y \rangle = 0$

EXCEPTIONAL FAMILIES OF ELEMENTS FOR CONTINUOUS FUNCTIONS

(iv)
$$x = P_K(z)$$
 and $y = P_O(z)$.

If $\mathbf{Q} = \mathbf{K}^0$, then by the *bipolarity theorem* it follows that $\mathbf{K} = \bar{\mathbf{K}} = \mathbf{Q}^0$ and hence **K** and **Q** are mutually polar.

By *Moreau's Theorem* each vector $z \in \mathbf{R}^n$ has a unique representation of the form

$$z = z^+ - z^- \tag{1}$$

where $z^+ = P_K(z)$ and $z^- = -P_{K^0}(z)$. (Note that $-z^-$ is the orthogonal complement of z^+).

We recall now the definition of the *general nonlinear complementarity problem*. Let $\mathbf{K} \subset \mathbf{R}^n$ be a pointed closed convex cone and $f : \mathbf{K} \to \mathbf{R}^n$, a function. The nonlinear complementarity problem associate with f and \mathbf{K} is:

$$NCP(f, \mathbf{K}) : \begin{cases} \text{find } x_* \in \mathbf{K} \text{ such that} \\ f(x_*) \in \mathbf{K}^* \text{ and} \\ \langle x_*, f(x_*) \rangle = 0. \end{cases}$$

The existence of solution of this problem is not evident [3, 9, 19]. Because of this fact, many authors have proposed several kinds of existence theorems [2, 3, 5, 7–9, 14, 18, 19]. For the importance and the applications of the problem $NCP(f, \mathbf{K})$ the reader is referred to [2, 3, 6, 9, 13, 21, 22]. Finally, in this paper we will use the topological degree as it is presented in the book [15].

Let Ω be a bounded open subset of \mathbb{R}^n and $y \in \mathbb{R}^n$ an arbitrary point. The closure Ω is written $\overline{\Omega}$ and its boundary $\partial \Omega$. We denote by $\mathcal{C}(\overline{\Omega})$ the linear space of continuous functions from $\overline{\Omega}$ into \mathbb{R}^n . If $F \in C(\overline{\Omega})$ and $y \in \mathbb{R}^n$ is such that $y \notin F(\partial \Omega)$, we denote by deg (F, Ω, y) the *topological degree* associated with F, Ω and y. If $F, G \in C(\overline{\Omega})$ we consider the homotopy $H(x, t) = tG(x) + (1 - t)F(x), t \in [0, 1]$.

THEOREM (Poincaré–Böhl, [15]). Let $\Omega \subset \mathbf{R}^n$ be an open bounded subset and $F, G \in C(\overline{\Omega})$ two continuous mappings. If $y \in \mathbf{R}^n$ is an arbitrary point satisfying the condition

 $y \notin \{H(x, t) | x \in \partial \Omega \text{ and } t \in [0, 1]\}$

then we have the following equality, $\deg(G, \Omega, y) = \deg(F, \Omega, y)$.

3. Main results

Let $(\mathbf{R}^n, \langle, \rangle)$ be the Euclidean space and $f : \mathbf{R}^n \to \mathbf{R}^n$ a continuous function. In the paper [11] are introduced the following notions.

We say that the family of points $\{x^k\}_{r>0} \subset R^h_+$ is an exceptional family of elements for f with respect to R^n_+ if $||x^r|| \to +\infty$ as $r \to +\infty$, and for each r > 0 there exists $\mu_r > 0$ such that:

 $(f_1) f_i(x^r) = -\mu_r x_i^r$ if $x_i^r > 0$

 $(f_2) f_i(x^r) \ge 0 \text{ if } x_i^r = 0.$

If, the cone \mathbf{R}_{+}^{n} is replaced by an arbitrary cone $\mathbf{K} \subset \mathbf{R}^{n}$, then we replace the notion defined above by the following:

We say that the family of points $\{x^r\}_{r>0} \subset \mathbf{R}^n$ is an exceptional family of elements for f, with respect to **K** if $||(x^r)^+|| \to +\infty$ as $r \to +\infty$, and for each r > 0 the point $f((x^r)^+)$ belongs to the open ray

$$\mathcal{O}((x^r)^-; s_r) = \{y = (x^r)^- + \mu s_r | \mu > 0\}$$

where $s_r = (x^r)^- - (x^r)^+$.

These notions were studied in [11, 13] and generalized in [25–27]. Using the topological degree, in [11] and also in [13], it was proved that for any continuous function $f : \mathbf{R}^n \to \mathbf{R}^n$, there exists either a solution for the problem $NCP(f, \mathbf{R}^n_+)$ (respectively for $NCP(f, \mathbf{K})$), or an exceptional family of elements for f.

In his Habilitation Thesis [13], V.V. Kalashnikov introduced the following definition, for an exceptional family of elements, which is, in some sense, a unification of both previous definitions.

DEFINITION 1 [13]. We say that the family of elements $\{x^r\}_{r>0} \subset \mathbf{K}$ is an exceptional family of elements for $f : \mathbf{R}^n \to \mathbf{R}^n$, with respect to the convex cone $\mathbf{K} \subset \mathbf{R}^n$, if and only if for every real number r > 0 there exists a real number $\mu_r > 0$ such that the vector $u_r = f(x^r) + \mu_r x^r$ satisfies the following conditions: (e_1) $u_r \in \mathbf{K}^*$,

 $\begin{array}{l} (e_1) \ u_r \in \mathbf{K} \ , \\ (e_2) \ \langle u_r, x^r \rangle = 0, \end{array}$

 $(e_3) ||x^r|| \to +\infty \text{ as } r \to +\infty$.

We say that the exceptional family of elements $\{x^r\}_{r>0}$ for f is *regular* if for any r > 0, $||x^r|| = r$. The next result was proved in [13] using the topological degree and the equivalence between the solvability of the problem $NCP(f, \mathbf{K})$ and the solvability of the nonlinear equation

$$f(P_K(x)) + x - P_K(x) = 0$$
(2)

(known as the "normal equation").

For the same result, we will give now another proof, much more simple based on the equivalence between the solvability of the problem $NCP(f, \mathbf{K})$ and the solvability of the nonlinear equation

$$x - P_K(x - f(x)) = 0$$
(3)

THEOREM 1. For any continuous function $f : \mathbf{R}^n \to \mathbf{R}^n$, there exists, either a solution for the problem $NCP(f, \mathbf{K})$, or a regular exceptional family of elements for f with respect to \mathbf{K} .

Proof. Consider the function

$$\Phi(x) = x - P_K(x - f(x)) \tag{4}$$

defined for any $x \in \mathbf{R}^n$. Using the properties (*i*) and (*ii*) of operator $P_{\mathbf{K}}$ we can show that the problem $NCP(f, \mathbf{K})$ has a solution if and only if the equation

$$\Phi(x) = 0 \tag{5}$$

is solvable. We use the following notations:

$$S_r = \{x \in \mathbf{R}^n | \|x\| = r\}, \ B_r = \{x \in \mathbf{R}^n | \|x\| < r\}$$

for any r > 0 and denote by *I* the identity mapping on \mathbb{R}^n . Consider the homotopy:

$$H(x,t) = tx + (1-t)\Phi(x); 0 \le t \le 1.$$
(6)

From the definition of Φ we have

$$H(x,t) = x - (1-t)P_K(x - f(x)); t \in [0,1]$$
(7)

We use the topological degree and we apply the *Poincaré–Böhl Theorem* for y = 0 and $\Omega = B_r(\partial \Omega = S_r)$. We have the following two situations:

- (A) There exists r > 0 such that $H(x, t) \neq 0$ for any $x \in S_r$ and any $t \in [0, 1]$. In this case by *Poincaré-Böhl Theorem* we have that $\deg(\Phi, B_r, 0) = \deg(I, B_r, 0)$. Since $\deg(I, B_r, 0) = 1$ we deduce that equation (5) has a solution in B_r , which implies that the problem $NCP(f, \mathbf{K})$ has a solution.
- (B) For every r > 0 there exist $x^r \in S_r$ and $t_r \in [0, 1]$ such that

$$H(x^r, t_r) = 0. \tag{8}$$

If $t_r = 0$, from (6) we have that $\Phi(x^r) = 0$ and hence the problem $NCP(f, \mathbf{K})$ has a solution.

We also remark that t_r must be different from 1. Indeed, if $t_r = 1$, using again (6) we deduce that $x^r = 0$, which is impossible since $x^r \in S_r$. Hence, we can say that either the problem $NCP(f, \mathbf{K})$ has a solution or for any r > 0 there exists $x^r \in S_r$ and $t_r \in]0, 1[$ such that $H(x^r, t_r) = 0$. From (7) we have

$$x^{r} - (1 - t_{r})P_{K}(x^{r} - f(x^{r})) = 0$$
(9)

or

$$\frac{1}{1-t_r}x^r = P_K(x^r - f(x^r)).$$
(10)

Because **K** is a cone we have that $x^r \in \mathbf{K}$. Applying the properties (*i*) and (*ii*) of operator P_K we deduce,

$$\left\langle \frac{1}{1-t_r} x^r - (x^r - f(x^r)), y \right\rangle \ge 0 \text{ for all } y \in \mathbf{K},$$
(11)

and

$$\left\langle \frac{1}{1-t_r} x^r - (x^r - f(x^r)), \frac{1}{1-t_r} x^r \right\rangle = 0.$$
(12)

If we put $\mu_r = t_r/1 - t_r$ in (11) and (12) we deduce

$$\langle \mu_r x^r + f(x^r), y \rangle \ge 0 \text{ for all } y \in \mathbf{K},$$
(13)

and

$$\langle \mu_r x^r + f(x^r), x^r \rangle = 0.$$
 (14)

Considering (13), (14) and the facts that for any r > 0, $x^r \in \mathbf{K}$ and $||x^r|| = r$, we have that $\{x^r\}_{r>0}$ is a regular exceptional family of elements for f with respect to **K**.

REMARK. We observe that *Theorem 1* is valid even if f is defined only on the cone **K**. Indeed, in this case we apply *Theorem 1* to the function $g : \mathbf{R}^n \to \mathbf{R}^n$ defined by $g(x) = f(P_K(x))$ for every $x \in \mathbf{R}^n$.

An immediate consequence of *Theorem 1* is the fact that if $f : \mathbf{K} \to \mathbf{R}^n$ is continuous and without exceptional families of elements with respect to **K**, then the problem $NCP(f, \mathbf{K})$ is solvable.

DEFINITION 2. We say that $f : \mathbf{K} \to \mathbf{R}^n$ satisfies *condition* (θ) if there exists $\rho > 0$ such that for all x with $||x|| > \rho$, there exists $y \in \mathbf{K}$ with ||y|| < ||x|| such that $\langle x - y, f(x) \rangle \ge 0$.

THEOREM 2. Let $f : \mathbf{K} \to \mathbf{R}^n$ be a continuous function. If f satisfies condition (θ) , then it is without regular exceptional families of elements and the problem $NCP(f, \mathbf{K})$ has a solution.

Proof. Suppose that f has a regular exceptional family of elements $\{x^r\}_{r>0} \subset \mathbf{K}$. We have

$$u_r = f(x^r) + \mu_r x^r \in \mathbf{K}^* \text{ for all } r > 0,$$
(15)

$$\langle x^r, u_r \rangle = 0 \text{ for all } r > 0, \tag{16}$$

and

$$\|x^r\| \to +\infty \text{ as } r \to +\infty \tag{17}$$

Take r > 0 such that $||x^r|| > \rho$. Since f satisfies condition (θ), there exists $y_r \in \mathbf{K}$ such that $||y_r|| < ||x^r||$ and $\langle x^r - y_r, f(x^r) \rangle \ge 0$. We have

$$0 \leq \langle x^r - y_r, f(x^r) \rangle = \langle x^r - y_r, u_r - \mu_r x^r \rangle$$

= $\langle x^r - y_r, u_r \rangle - \mu_r \|x^r\|^2 + \mu_r \langle y_r, x^r \rangle$
 $\leq -\mu_r \|x^r\| [\|x^r\| - \|y_r\|] < 0,$

which is impossible. Hence, the function f is without regular exceptional families of elements with respect to **K** and applying *Theorem 1* we obtain the last conclusion of the theorem.

Condition (θ) contains as a particular case the classical Karamardian's condition.

DEFINITION 3. [14] We say that $f : \mathbf{R}^n \to \mathbf{R}^n$ satisfies *Karamardian's condition* on **K** if there exists a closed bounded set $D \subset \mathbf{K}$ such that for all $x \in \mathbf{K} \setminus D$ there exists $y \in D$ such that $\langle x - y, f(X) \rangle \ge 0$.

PROPOSITION 3. If $f : \mathbf{R}^n \to \mathbf{R}^n$ satisfies Karamardian's condition on **K** then *f* satisfies condition (θ).

Proof. Let $D \subset \mathbf{K}$ be the set defined by Karamardian's condition. Since D is bounded, then there exists $\rho > 0$ such that $D \subset \overline{B}_{\rho} \cap \mathbf{K}$. For any x such that $||x|| > \rho$ there exists an element $y \in D$ (that is such that $||y|| \le \rho < ||x||$) verifying $x - y, f(x) \ge 0$. Hence condition (θ) is satisfied. \Box

Let $\varphi : [0, +\infty[\to [0, +\infty[$ be a function such that $\lim_{t\to +\infty} \varphi(t) = +\infty$ and $u \in \mathbf{K}$ an arbitrary element.

DEFINITION 4. We say that $f : \mathbf{K} \to \mathbf{R}^n$ is asymptotically (u, φ) -monotone if there exists a real number $\rho > 0$ (eventually sufficiently large) such that $\langle x - u, f(x) - f(u) \rangle \ge ||x - u|| \varphi(||x - u||)$ for all $x \in \mathbf{K}$ with $||x|| > \rho$

PROPOSITION 4. Any asymptotically (u, φ) -monotone operator $f : \mathbf{K} \to \mathbf{R}^n$ satisfies property (θ) with respect to \mathbf{K} .

Proof. For every $x \in \mathbf{K}$ with $||x|| > \max(\rho, ||u||)$ we have

$$\langle x - u, f(x) - f(u) \rangle \ge \|x - u\|\varphi(\|x - u\|)$$

which implies

$$\langle x - u, f(x) \rangle \ge \langle x - u, f(u) \rangle + \|x - u\|\varphi(\|x - u\|).$$

Since ||x|| > ||u|| we have ||x - u|| > 0 and

$$\langle x-u, f(x) \rangle \ge \|x-u\| \left[\left\langle \frac{x-u}{\|x-u\|}, f(u) \right\rangle + \varphi(\|x-u\|) \right].$$

Considering for *u* fixed, f(u) as a continuous linear functional on \mathbb{R}^n and applying *Weierstrass' Theorem* with respect to the compact set $S_1^+ = \{x \in \mathbb{K} | ||x|| = 1\}$, we deduce that there exists $\gamma \in \mathbb{R}$ such that $\langle x - u/||x - u||, f(u) \rangle \ge \gamma$ for any $x \in \mathbb{R}$ with $||x|| > \max(\rho, ||u||)$. Since $\lim_{t \to +\infty} \varphi(t) = +\infty$ we have that there exists $\rho_* > 0$ such that $||x - u|| > \rho_*$ implies $\varphi(||x - u||) \ge -\gamma$, that is $\langle x - u, f(x) \rangle \ge 0$. If, for any $x \in \mathbb{K}$ satisfying $||x|| > \max(\rho_* + ||u||, \rho)$, we take y = u we have immediately that f satisfies condition (θ) with respect to \mathbb{K} . \Box

Also, we may consider the following two generalizations of the (u, φ) -monotonicity.

DEFINITION 5. We say that $f : \mathbf{K} \to \mathbf{R}^n$ is asymptotically (u, v, φ) -monotone, if there exist $\rho > 0$ and $v \in \mathbf{K}$ such that $\langle x - u, f(x) - f(v) \rangle \ge ||x - u||\varphi(||x - u||)$ for all $x \in \mathbf{K}$ with $||x|| > \rho$.

DEFINITION 6. We say that $f : \mathbf{K} \to \mathbf{R}^n$ is asymptotically (u, g, φ) -monotone, if there exist $\rho > 0$ and a function $g : \mathbf{K} \to \mathbf{R}^n$ such that $\langle x - u, f(x) - g(u) \rangle \ge ||x - u||\varphi(||x - u||)$ for all $x \in \mathbf{K}$ with $||x|| > \rho$.

PROPOSITION 5. If $f : \mathbf{K} \to \mathbf{R}^n$ is an asymptotically (u, v, φ) -monotone or (u, g, φ) -monotone function, then f satisfies property (θ) with respect to \mathbf{K} . *Proof.* The proof is similar to the proof of *Proposition 4* and we omit it. \Box

THEOREM 6. If the function $f : \mathbf{K} \to \mathbf{R}^n$ is continuous and there exists $\rho > 0$ such that $\langle x, f(x) \rangle \ge 0$ for all $x \in \mathbf{K}$ with $||x|| > \rho$, then f satisfies condition (θ) with respect to \mathbf{K} and the problem $NCP(f, \mathbf{K})$ has a solution.

Proof. We apply *Theorem 2* taking y = 0 for all $x \in \mathbf{K}$ with $||x|| > \rho$. \Box

THEOREM 7. If for the continuous function $f : \mathbf{K} \to \mathbf{R}^n$ there exists $\rho > 0$ such that for all $x \in \mathbf{K}$ with $||x|| = \rho$ there exists u with $||u|| < \rho$ such that $\langle x - u, f(x) \rangle \ge 0$, then the problem $NCP(f, \mathbf{K})$ has a solution.

Proof. For all $x \in \mathbf{K}$ with $||x|| > \rho$ denote by $T_{\rho}(x)$ the radial projection onto $S_{\rho}^{+} = \{x \in \mathbf{K} | ||x|| = \rho\}$, i.e., $T_{\rho}(x) = \rho/||x||$. Consider the function $g : \mathbf{K} \to \mathbf{R}^{n}$ defined by

$$g(x) = \begin{cases} f(x), & \text{if } ||x|| \leq \rho \\ f(T_{\rho}(x)) + ||x - T_{\rho}(x)||x, & \text{if } ||x|| > \rho. \end{cases}$$

For any $x \in \mathbf{K}$ with $||x|| > \rho$ there exists $\lambda_x > 0$ such that $x = \lambda_x T_{\rho}(x)$. By assumption, for $T_{\rho}(x)$ there exists u_{ρ}^x with $||u_{\rho}^x|| < \rho$ such that

$$\begin{aligned} \langle T_{\rho}(x) - u_{\rho}^{x}, f(T_{\rho}(x)) \rangle &\geq 0. \end{aligned} \tag{18} \\ \langle x - \lambda_{x} u_{\rho}^{x}, g(x) \rangle &= \langle \lambda_{x} T_{\rho}(x) - \lambda_{x} u_{\rho}^{x}, g(x) \rangle \\ &= \langle \lambda_{x} T_{\rho}(x) - \lambda_{x} u_{\rho}^{x}, f(T_{\rho}(x)) + \|x - T_{\rho}(x)\|x \rangle \\ &= \lambda_{x} \langle T_{\rho}(x) - u_{\rho}^{x}, f(T_{\rho}(x)) \rangle + \|x - T_{\rho}(x)\| \|x\|^{2} - \|x - T_{\rho}(x)\| \langle \lambda_{x} u_{\rho}^{x}, x \rangle \\ &\geq \|x - T_{\rho}(x)\| [\|x\|^{2} - \lambda_{x} u_{\rho}^{x}, x \rangle] \\ &\geq \|x - T_{\rho}(x)\| [\lambda_{x}^{2}\|T_{\rho}(x)\|^{2} - \lambda_{x}^{2}\|u_{\rho}^{x}\| \|T_{\rho}(x)\| \\ &= \|x - T_{\rho}(x)\| \lambda_{x}^{2}\|T_{\rho}(x)\| [\|T_{\rho}(x)\| - \|u_{\rho}^{x}\|] > 0. \end{aligned}$$

If for given x we take $y = \lambda_x u_{\rho}^x$ we have that g satisfies condition (θ) with respect to **K**. Because we can show that g is continuous, applying *Theorem 2* we deduce that the problem $NCP(g, \mathbf{K})$ has a solution $x_* \in \mathbf{K}$. The solution x_* is such that $||x_*|| \leq \rho$. Indeed, if $||x_*|| > \rho$ we must have

$$\langle x_* - \lambda_{x_*} u_o^{x_*}, g(x_*) \rangle > 0$$
 (19)

or

$$\langle \lambda_{x_*} u_0^{x_*} - x_*, g(x_*) \rangle < 0 \tag{20}$$

which is impossible, because the problem $NCP(g, \mathbf{K})$ being equivalent to a variational inequality we have

$$\langle \lambda_{x_*} u_o^{x_*} - x_*, g(x_*) \rangle \ge 0$$

Hence, $||x_*|| \leq \rho$ and in this case from the definition of g we have $g(x_*) = f(x_*)$, that is, x_* is a solution of the problem $NCP(f, \mathbf{K})$.

The next result is close to *Theorem 6*. We say that a mapping $T : \mathbf{K} \to \mathbf{R}^n$ satisfies *condition* (β) if there exists a real number $\beta(T) > 0$ such that for all $x \in \mathbf{K}$ with $||x|| \ge 1$ we have $||T(x)|| \le \beta(T)||x||$.

EXAMPLES

- (1) Any linear continuous operator $T : \mathbf{R}^n \to \mathbf{R}^n$ satisfies condition (β).
- (2) If $T : \mathbf{K} \to \mathbf{R}^n$ satisfies Lipschitz property, then *T* satisfies property (β). Indeed, let $x_0 \in \mathbf{K}$ a particular element. Since *T* is a Lipschitzian mapping, there exists k > 0 such that $||T(x) - T(x_0)|| \leq k||x - x_0||$ for any $x \in \mathbf{K}$. It follows that $||T(x)|| \leq ||T(x) - T(x_0)|| + ||T(x_0)|| \leq k||x|| + k||x_0|| + ||T(x_0)||$. If we set $\beta_0 = k||x_0|| + ||T(x_0)||$ we have $||T(x)|| \leq k||x|| + \beta_0$, which implies for any *x* with $||x|| \geq 1$ that $||T(x)|| \leq k||x|| + \beta_0||x|| = (k + \beta_0)||x||$. Hence, *T* satisfies condition (β) with $\beta(T) = k + \beta_0$.

THEOREM 8. Let $f : \mathbf{K} \to \mathbf{R}^n$ be a continuous function and $T : \mathbf{K} \to \mathbf{R}^n$ a mapping satisfying condition (β). If the following assumptions are satisfied:

(1) $\lim_{\|x\|\to+\infty} \langle f(x) - T(x), x \rangle / \|x\|^2 \ge k_0 > 0$,

(2) $\beta(T) < k_0$,

Then there exists $\rho > 1$ such that $\langle f(x), x \rangle > 0$ for all $x \in \mathbf{K}$ with $||x|| > \rho$. Moreover, the problem $NCP(f, \mathbf{K})$ has a solution $x_* \in \mathbf{K}$ such that $||x_*|| \leq \rho$.

Proof. Take an $\varepsilon > 0$ such that $\beta(T) + \varepsilon < k_0$. From assumption (1) there exists $\rho > 1$ such that for all $x \in \mathbf{K}$ with $||x|| > \rho$ we have

$$\frac{\langle f(x) - T(x), x \rangle}{\|x\|^2} > k_0 - \varepsilon$$

which implies

$$\langle f(x) - T(x), x \rangle > (k_0 - \varepsilon) ||x||^2$$

and finally,

$$\langle f(x), x \rangle > \langle T(x), x \rangle + (k_0 - \varepsilon) ||x||^2.$$

From the last inequality we obtain

 $\langle f(x), x \rangle \ge -\beta(T) \|x\|^2 + (k_0 - \varepsilon) \|x\|^2 = \|x\|^2 (-\beta(T) - \varepsilon + k_0) > 0$ for all $x \in \mathbf{K}$ with $\|x\| > \rho$.

Applying *Theorem* 6 we obtain that the problem $NCP(f, \mathbf{K})$ has a solution $x_* \in \mathbf{K}$. To finish, it is sufficient to observe that because $\langle f(x), x \rangle > 0$ for all $x \in \mathbf{K}$ with $||x|| > \rho$, we must have $||x_*|| \le \rho$.

REMARK. Theorem 8 is applicable in the following two cases.

- (a) f(x) = T(x) + a x + b, where a > 0, $b \in \mathbb{R}^n$ is an arbitrary vector and T satisfies condition (β) with $\beta(T) < a$.
- (b) f(x) = T(x) + Lx + b, where $b \in \mathbb{R}^n$ is an arbitrary vector, *L* is a linear operator from \mathbb{R}^n into \mathbb{R}^n such that $\langle Lx, x \rangle \ge k_0 ||x||^2$ for any $x \in \mathbb{K}$ and *T* satisfies condition (β) with $\beta(T) < k_0$.

Also, *Theorem 8* has an interesting application to the Linear Complementarity Problem.

PROPOSITION 9. Let A be an $n \times n$ -matrix such that $A = A_1 + A_2$ and the following assumptions are satisfied:

(1) $\langle A_2 x, x \rangle \ge k_0 ||x^2||$ with $k_0 > 0$ for any $x \in \mathbf{K}$,

(2) $||A_1|| < k_0$, where $||A_1||$ is the norm of A_1 considered as linear operator. Then the problem $LCP(A, b, \mathbf{K})$ has a solution for any $b \in \mathbf{R}^n$.

Proof. It is sufficient to remark that all assumptions of *Theorem 8* are satisfied for the mapping $f(x) = A_1x + A_2x + b$.

4. Application to fixed point theory

Now, we apply *Theorem 7* to the *fixed point theory*. The next result is related to the classical *Altman's fixed point theorem* [1, 10].

THEOREM 10 (Generalization of Altman's Theorem). If for the continuous mapping $h : \mathbf{K} \to \mathbf{K}$ there exists $\rho > 0$ such that for all $x \in \mathbf{K}$ with $||x|| = \rho$ there exists $u \in \mathbf{K}$ with $||u|| < \rho$ such that $\langle x - u, x - h(x) \rangle \ge 0$, then the mapping h has a fixed point in \mathbf{K} .

Proof. From the complementarity theory it is known that the mapping $h : \mathbf{K} \rightarrow \mathbf{K}$ has a fixed point in **K** if and only if the problem $NCP(I - h, \mathbf{K})$ has a solution. Applying *Theorem 7*, the theorem follows.

The next corollary can be considered as the analogue for cones of the well known *Altman's fixed point theorem* [1, 10].

COROLLARY 11. If for the continuous function $h : \mathbf{K} \to \mathbf{K}$ there exists $\rho > 0$ such that for all $x \in \mathbf{K}$ with $||x|| = \rho$ we have

 $||x||^2 \ge \langle x, f(x) \rangle,$

then h has a fixed point in K.

REMARK. The assumption used in *Theorem 10* is more flexible than the assumption used in [10].

5. Complementarity problems with P_0 -functions

Now, we will study the problem $NCP(f, \mathbb{R}^n_+)$ associated with a P_0 -function f: $\mathbb{R}^n_+ \to \mathbb{R}^n$. The class of P_0 -function (*P*-function) were introduced by J.J. Moré and W. Rheinboldt [20] as a natural extension of the notion of a square matrix to be a P_0 -matrix (*P*-matrix), i.e., if all its principal minors are nonnegative (positive).

We recall the definition. A function $f : D \subset \mathbf{R}^n \to \mathbf{R}^n$ is a P_0 -function (P-function) on D if for all $x, y \in D, x \neq y$, there exists an index i = i(x, y), such that $x_i \neq y_i$ and $(x_i - y_i)(f_i(x) - f_i(y)) \ge 0$, $((x_i - y_i)(f_i(x) - f_i(y)) \ge 0)$.

Considering the problem $NCP(f, \mathbf{R}_{+}^{n})$, denote by \mathcal{F} the set of all feasible solutions, i.e., $\mathcal{F} = \{x \in \mathbf{R}_{+}^{n} | f_{i}(x) \ge 0, \text{ for all } i = 1, 2, ..., n\}$. We say that $u \in \mathcal{F}$ is strictly feasible if $f_{i}(u) > 0$, for all i = 1, 2, ..., n. In [19], J.J. Moré showed that if f is a monotone mapping, i.e., $\langle x - y, f(x) - f(y) \rangle \ge 0$ for all $x, y \in \mathbf{R}_{+}^{n}$ and \mathcal{F} contains at least one strictly feasible point, then $NCP(f, \mathbf{R}_{+}^{n})$ has a solution. This result cannot be extended to the class of P_{0} -functions (even P-function) as the following simple example shows. Let $f : \mathbf{R}^{2} \to \mathbf{R}^{2}$ be defined by $f_{1}(x) = \psi(x_{1}) + x_{2}$ and $f_{2}(x) = x_{2}$, where $\psi : \mathbf{R} \to \mathbf{R}$ is

$$\psi(t) = -\frac{1}{2}e^{-t}.$$

The function *f* is a continuous *P*-function, and $\mathcal{F} = \{(x_1, x_2) \in \mathbf{R}^2_+ | x_1 \ge 0, x_2 \ge \frac{1}{2}e^{-x_1}\}.$

The point u = (0, 1) is a strictly feasible point, but the only point which satisfies the complementarity condition associated with f is (0,0), which is not a solution of $NCP(f, \mathbf{R}^n_+)$ since $(0, 0) \notin \mathcal{F}$.

The next result shows that the problem $NCP(f, \mathbf{R}_{+}^{n})$ associated to a P_{0} -function is solvable if the set \mathcal{F} contains *n* points of a particular form.

THEOREM 12. Let $f : \mathbf{R}_{+}^{n} \to \mathbf{R}^{n}$ be a P_{0} -function. If the feasible set \mathcal{F} contains n points $e^{(j)}$, j = 1, 2, ..., n such that $e_{j}^{(j)} > 0$ and $e_{i}^{(j)} = 0$ for all $i \neq j$, then the problem $NCP(f, \mathbf{R}_{+}^{n})$ has a solution.

Proof. If, for a particular j, $f_j(e^{(j)}) = 0$ we have that $e^{(j)}$ is a solution of the problem $NCP(f, \mathbf{R}_+^n)$. Hence, we can suppose that for every $j \in \{1, 2, ..., n\}$ $f_j(e^{(j)}) > 0$. The theorem will be proved, if we show that f is without exceptional families of elements with respect to \mathbf{R}_+^n . Indeed, suppose that f has an exceptional family of elements $\{x^r\}_{r>0} \subset \mathbf{R}_+^n$. Because the particularities of the cone \mathbf{R}_+^n we have for $\{x^r\}_{r>0}$ the following properties:

- (i₁) $||x^r|| \to +\infty$ as $r \to +\infty$,
- (i₂) for every r > 0 there exists $\mu_r > 0$ such that

(a)
$$f_i(x^r) = -\mu_r x_i^r$$
, if $x_i^r > 0$,

(b)
$$f_i(x^r) \ge 0$$
, if $x_i^r = 0$.

By property (i₁) there exists an index r > 0 such that

$$\|x^{r}\| > \sqrt{\sum_{j=1}^{n} (e_{j}^{(j)})^{2}}.$$
(21)

From (21) we have that there exists $j_0 \in \{1, 2, ..., n\}$ such that $x_{j_0}^r > e_{j_0}^{(j_0)}$. We observe that

$$x^r \neq e^{(j_0)} = (0, 0, \dots, e^{(j_0)}_{j_0}, 0, 0, \dots, 0).$$
 (22)

Since f is a P₀-function, there exists $i = i(x^r, e^{(j_0)})$ such that $x_i^r \neq e_i^{(j_0)}$ and

$$(x_i^r - e_i^{(j_0)})(f_i(x^r) - f_i(e^{(j_0)})) \ge 0.$$
(23)

If $i = j_0$ then we have

$$(x_{j_0}^r - e_{j_0}^{(j_0)})(f_{j_0}(x^r) - f_{j_0}(e^{(j_0)})) < 0.$$

which is a contradiction of (23).

If $i \neq j_0$ then we have $e_i^{(j_0)} = 0$ and $x_i^r > 0$, which imply again

$$(x_i^r - e_i^{(j_0)})(f_i(x^r) - f_i(e^{(j_0)})) < 0.$$

The last inequality is also a contradiction of (23). We conclude that f is without exceptional families of elements with respect to \mathbf{R}_{+}^{n} , and by *Theorem 1* the problem $NCP(f, \mathbf{R}_{+}^{n})$ has a solution.

6. Application to the study of Generalized Linear Complementarity Problem

Theorem 12 can be used to extend to P_0 -functions the main existence theorem for the Generalized Linear Complementarity Problem (known as the Vertical Linear Complementarity Problem) proved in [2].

We recall the definition of this problem. By a vertical block matrix M of type (m_1, m_2, \ldots, m_n) , we mean a matrix

$$M = \begin{pmatrix} M_1 \\ M_2 \\ \vdots \\ M_j \\ \vdots \\ M_n \end{pmatrix}$$

where the *j*-th block M^j has order $m_j \times n$. Thus for $m = \sum_{j=1}^n m_j$ the matrix M is of order $m \times n$. Let q be a vector in \mathbf{R}^m partitioned conformably with M, i.e.,

$$q = \begin{pmatrix} q^1 \\ q^2 \\ \vdots \\ q^j \\ \vdots \\ q^n \end{pmatrix}$$

with $q^j \in \mathbf{R}^{m_j}$.

The Generalized Linear Complementarity Problem (associated with *M* and *q*), denoted by GLCP(M, q), is to find $z \in \mathbf{R}^n$ such that:

$$GLCP(M,q): \begin{cases} z \ge 0, M^{j}z + q^{j} \ge 0_{m_{j}} \text{ and} \\ z_{j} \prod_{i=1}^{m_{j}} (M^{j}z + q^{j})_{i} = 0 (j = 1, 2, ..., n) \end{cases}$$

where 0_{m_j} is the null vector in \mathbf{R}^{m_j} . This clearly agrees with the Linear Complementarity Problem when $m_j = 1$ and M^j is the *j*-th row of M(j = 1, 2, ..., n). The problem GLCP(M, q) was defined in [4] and it has been studied recently in [2, 5, 6, 17, 22–24].

We recall now some notions on rectangular matrices. Let M be a vertical block matrix of type $(m_1, m_2, ..., m_n)$. An $n \times n$ submatrix N of M is called a *representative submatrix* if its *j*-th row is drawn from the *j*-th block, M^j of M. The

properties of M will be based upon properties of its representative submatrices. Having this concept, we can talk about principal submatrices of the rectangular matrix M. Obviously, a vertical block matrix M of type (m_1, m_2, \ldots, m_n) has $\prod_{i=1}^n m_i$ representative submatrices.

Let *M* be a vertical block matrix of type $(m_1, m_2, ..., m_n)$. A principal submatrix of *M* is a principal submatrix of a representative submatrix of *M*. The determinant of such a matrix is a principal minor of *M*. A vertical block matrix *M* of type $(m_1, m_2, ..., m_n)$ is called a P_0 -matrix (*P*-matrix) if and only if all its principal minors are nonnegative (strictly positive).

The next result is an existence theorem for the problem GLCP(M, q) when M is a P_0 -matrix.

THEOREM 13. Let M be a P_0 -vertical block matrix of type (m_1, m_2, \ldots, m_n) and $q \in \mathbf{R}^m$ a vector partitioned conformably with $M, m = \sum_{j=1}^n m_j$. Assume that there exists n vectors $x^{(l)} = (x_k^l)l = 1, 2, \ldots, n, k = 1, 2, \ldots, n$ such that

$$\begin{cases} \text{for each } l = 1, 2, \dots, n \\ x_k^l = 0 \text{ for } k \neq l, x_l^l > 0 \text{ and} \\ \min_{1 \le i \le m_j} \{ (M^j x^{(l)})_i + q_i^j \} \ge 0, \text{ for } j = 1, 2, \dots, n. \end{cases}$$
(24)

Then the problem GLCP(M, q) has a solution.

Proof. Consider the piecewise linear function $f : \mathbf{R}^n \to \mathbf{R}^n$ defined as

$$f_j(x) = \min_{l \le i \le m_j} \{ (M^j x)_i + q_i^j \}, \, j = 1, 2, \dots, n.$$

Clearly, the solvability of GLCP(M, q) is equivalent to the solvability of the problem $NCP(f, \mathbf{R}^n_+)$. As already observed by A.A. Ebiefung [5], the assumption on M implies that f is a P_0 -function, moreover condition (24) implies that the assumptions of *Theorem 12* hold for f defined above and $e^{(1)} = x^{(1)} \cdots e^{(n)} = x^{(n)}$. Hence the result follows from *Theorem 12*.

REMARK. If *M* is a *P*-vertical block matrix this problem has been solved in [4] in the case that the feasible set is non-empty. It is known that if *M* is a *P*-matrix, then the solution is unique [19]. With a different technique, in 1989, in his Ph.D. Thesis, B. P. Szanc [22] proved that the existence result, for a *P*-vertical block matrix, follows from the fact that the function f is a non degenerate *P*-function. *Theorem 13* is a more general result.

Acknowledgments

Thanks for Professor I. Massabo from University of Calabria for the numberless stimulating conversations about the subject of this paper.

References

- 1. Altman, M. (1957), A fixed point theorem in Hilbert space, Bull. Acad. Polon. Sci. 5: 19-22.
- 2. Carbone, A. and Isac, G. (1998), The generalized order complementarity problem. Applications to economics and an existence result, *Nonlinear Studies* 5(2): 139–152.
- 3. Cottle, R.W., Pang, J.S. and Stone, R.E. (1992), *The Linear Complementarity Problem*, Academic Press, New York.
- Cottle, R.W. and Dantzig, G.B. (1970), A generalization of the linear complementarity problem, J. Combinatorial Theory 8: 79–90.
- 5. Ebiefung, A.A. (1995), Nonlinear mappings associated with the generalized linear complementarity problem, *Math. Programming* 69: 255–268.
- Ebiefung, A.A. and Kostreva, M.M. (1993), The generalized Leontief input-output model and its application to the choice of new technology, *Annals Oper. Res.* 44: 161–172.
- 7. Fisher, M.L. and Tolle, J.W. (1977), The nonlinear complementarity problem: Existence and determination of solution, *SIAM J. Control Opt.* 15(4): 612–624.
- Isac, G. (1988), Fixed point theorem coincidence equations on convex cones and complementarity problem, *Contemporary Mathematics* 72: 139–155.
- 9. Isac, G. (1992), Complementarity Problem, *Lecture Notes in Mathematics 1528*, Springer Verlag, Berlin/New York.
- Isac, G. (1995), On an Altman type fixed point theorem on convex cones, *Rocky Mountain J. Math.* 25(2): 701–714.
- 11. Isac, G., Bulavski, V. and Kalashnikov, V. (1997), Exceptional families, topological degree and complementarity problems, *J. Global Opt.* 10: 207–225.
- 12. Isac, G. and Obuchowska, W.T. (1998), Functions without exceptional families of elements and complementarity problem, *J. Opt. Theory Appl.* 99(1): 147–163.
- 13. Kalashnikov, V.V. (1995), Complementarity Problem and the Generalized Oligopoly Model, *Habilitation Thesis, CEMI*, Moscow (in Russian).
- 14. Karamardian, S. (1971), Generalized complementarity problem, *J. Optim. Theory Appl.* 8(3): 161–168.
- 15. Lloyd, N.G. (1978), Degree Theory, Cambridge University Press.
- Moreau, J. (1962), Décomposition orthogonal d'une espace hilbertien selon deux cônes mutuellement polaire, C. R. Acad. Sci. Paris Tom A, 225: 238–240.
- Mohan, S.R., Neogy, S.K. and Sridhar, R. (1996), The generalized linear complementarity problem revisited, *Math. Programming* 74: 197–218.
- Moré, J.J. (1974), Coercivity conditions in nonlinear complementarity problems, *SIAM Review* 16(1): 1–16.
- Moré, J.J. (1976), Classes of functions and feasibility conditions in nonlinear complementarity problems, *Math. Programming* 6: 327–338.
- Moré, J.J. and Rheinboldt, W. (1973), On P and S-function and related classes of Ndimensional nonlinear mappings, *Linear Algebra and its Applications*, 6: 45–68.
- Smith, T.E. (1984), A solution condition for complementarity problems with application to spatial price equilibrium, *Applied Mathematics and Computation* 15: 61–69.
- 22. Szanc, B.P. (1989), The Generalized Complementarity Problem, *Ph. D. Thesis*, Rensselaer Polytechnic Institute, Troy, New York.
- 23. Sznajder, R. and Gowda, M.S. (1995), Generalization of *P*₀- and *P*-properties; Extended vertical and horizontal linear complementarity problems, *Linear Alg. Appl.* 223/224: 695–715.
- 24. Vandeberge, L., De Moor, B.L. and Vandervalle, J. (1989), The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits, *IEEE Trans. Circuits and Syst.* 11: 1382–1391.
- Zhao, Y.B. (1997), Exceptional families and finite-dimensional variational inequalities over polyhedral convex sets, *Appl. Math. Computation* 87: 111–126.

- 26. Zhao, Y.B., Han, J.Y. and Qi, H.D. (1997), Exceptional families and existence theorems for variational inequality problems (*Preprint, Institute of Appl. Math. Academia SINICA, Beijing*).
- 27. Zhao, Y.B., Han, J.Y. (1997), Exceptional family for variational inequality problem and its applications (*Preprint, Institute of Appl. Math. Academia SINICA, Beijing*).