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Abstract. Using the topological degree and the concept of exceptional family of elements for a
continuous function, we prove a very general existence theorem for the nonlinear complementarity
problem. This result is an alternative theorem. A generalization of Karamardian’s condition and the
asymptotic monotonicity are also introduced. Several applications of the main results are presented.
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1. Introduction

Initially, a notion of “exceptional family of elements” for a continuous function was
introduced in 1984 by T. E. Smith, using a special property of projection operator
onto a closed convex set in the Euclidean space(Rn,<,>) [21]. Recently, using
the topological degree, a more general notion ofexceptional family of elementswas
introduced by G. Isac, V. Bulavski and V. V. Kalashnikov [11, 13]. Using this no-
tion, in [11] are presented somealternative existence theoremsfor complementarity
problems. A consequence of these results is the fact that, given a closed convex
coneK in Rn and a continuous functionf : Rn→ Rn, to conclude that the comple-
mentarity problemCP(f,K ) associated withf andK has a solution, it is sufficient
to show thatf is without exceptional families of elements with respectK . It follows
that it is interesting to know under what conditions a function is without exceptional
families of elements with respect to a convex cone. This problem has been studied
in [11–13, 25–27]. Now, in this paper we present some new conditions which imply
that a function is without exceptional families of elements. As applications, we
present a few existence theorems for complementarity problems, a generalization
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of Altman’s fixed point theorem and an existence result for the complementarity
problem associated to aP0-function and applicable to the study of the solvability
of the generalized complementarity problem in the sense of Cottle and Dantzig
[3, 10, 20, 22]. We note that the complementarity theory has many and interesting
applications in Optimization, Economics, Game Theory, Engineering, Mechanics
etc. [2, 3, 6, 9, 13, 21, 24]. Finally, we note that the concept of exceptional families
of elements recently, has been extended for variational inequalities in [25–27]. The
results presented in this paper can be considered as a complementary part of the
papers [11–13], [25–27].

2. Preliminaries

Let (Rn,<,>) be the Euclidean space andK ⊂ Rn a closed pointed convex cone,
i.e.,K is a non-empty closed set satisfying the following properties:

k1) K + K ⊆ K
k2) λK ⊆ K for all λ ∈ R+,
k3) K ∩ (−K ) = {0}.

Whenever a closed pointed convex coneK ⊂ E is defined, we have an ordering on
E defined byx 6 y, if and only if y − x ∈ K . By definition the dual ofK is

K ∗ = {y ∈ Rn|〈x, y〉 > 0 for all x ∈ K }
If D ⊂ Rn is a closed convex set we denote the projection ontoD by PD, that is,
for everyx ∈ Rn, PD(x) is the unique element inD satisfying

‖x − PD(x)‖ = min
y∈D ‖x − y‖.

In particular ifK ⊂ Rn is a closed convex cone we denote the projection onto
K by PK .

We recall that the projectionPK onto a closed convex coneK is characterized
by the following properties. For everyx ∈ Rn, PK (x) is the (unique) element inK
satisfying the following conditions:

(i) 〈PK(x)− x, y〉 > 0 for all y ∈ K ,
(ii) 〈PK(x)− x, PK(x)〉 = 0.
If K andQ are two closed convex cones inRn, we say thatK andQ aremutually

polar if K = Q0, whereQ0 is thepolar of Q, that is,

Q0 = {x ∈ Rn|〈x, y〉 6 0 for all y ∈ Q}
We will use the following classical result.

THEOREM (Moreau [16]). If K and Q are two mutually polar convex cones in
the Euclidean space(Rn,<,>) and x, y, z ∈ Rn, then the following statements
are equivalent:

(iii) z = x + y; x ∈ K , y ∈ Q and〈x, y〉 = 0
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(iv) x = PK(z) andy = PQ(z).
If Q = K0, then by thebipolarity theoremit follows thatK = K̄ = Q0 and hence
K andQ are mutually polar.

By Moreau’s Theoremeach vectorz ∈ Rn has a unique representation of the
form

z = z+ − z− (1)

wherez+ = PK(z) andz− = −PK0(z). (Note that−z− is the orthogonal comple-
ment ofz+).

We recall now the definition of thegeneral nonlinear complementarity problem.
Let K ⊂ Rn be a pointed closed convex cone andf : K → Rn, a function. The
nonlinear complementarity problem associate withf andK is:

NCP(f,K ) :


find x∗ ∈ K such that

f (x∗) ∈ K ∗ and

〈x∗, f (x∗)〉 = 0 .

The existence of solution of this problem is not evident [3, 9, 19]. Because of this
fact, many authors have proposed several kinds of existence theorems [2, 3, 5, 7–9,
14, 18, 19]. For the importance and the applications of the problemNCP(f,K )
the reader is referred to [2, 3, 6, 9, 13, 21, 22]. Finally, in this paper we will use the
topological degree as it is presented in the book [15].

Let � be a bounded open subset ofRn and y ∈ Rn an arbitrary point. The
closure� is written �̄ and its boundary∂�. We denote byC(�̄) the linear space
of continuous functions from̄� into Rn. If F ∈ C(�̄) andy ∈ Rn is such that
y 6∈ F(∂�), we denote by deg(F,�, y) the topological degreeassociated withF ,
� andy. If F,G ∈ C(�̄) we consider the homotopyH(x, t) = tG(x) + (1 −
t)F (x), t ∈ [0,1].

THEOREM (Poincaré–Böhl, [15]).Let� ⊂ Rn be an open bounded subset and
F,G ∈ C(�̄) two continuous mappings. Ify ∈ Rn is an arbitrary point satisfying
the condition

y 6∈ {H(x, t)|x ∈ ∂� and t ∈ [0,1]}
then we have the following equality,deg(G,�, y)= deg(F,�, y).
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3. Main results

Let (Rn, 〈, 〉) be the Euclidean space andf : Rn → Rn a continuous function. In
the paper [11] are introduced the following notions.

We say that the family of points{xk}r>0 ⊂ Rh+ is an exceptional family of
elements forf with respect toRn+ if ‖xr‖ → +∞ as r → +∞, and for each
r > 0 there existsµr > 0 such that:
(f1) fi(x

r ) = −µrxri if xri > 0
(f2) fi(x

r ) > 0 if xri = 0.
If, the coneRn+ is replaced by an arbitrary coneK ⊂ Rn,, then we replace the
notion defined above by the following:
We say that the family of points{xr}r>0 ⊂ Rn is an exceptional family of elements
for f , with respect toK if ‖(xr )+‖ → +∞ asr → +∞, and for eachr > 0 the
pointf ((xr )+) belongs to the open ray

O((xr )−; sr ) = {y = (xr )− + µsr |µ > 0}
wheresr = (xr )− − (xr )+.

These notions were studied in [11, 13] and generalized in [25–27]. Using the
topological degree, in [11] and also in [13], it was proved that for any continuous
functionf : Rn→ Rn, there exists either a solution for the problemNCP(f,Rn+)
(respectively forNCP(f,K )), or an exceptional family of elements forf .

In his Habilitation Thesis [13], V.V. Kalashnikov introduced the following defin-
ition, for an exceptional family of elements, which is, in some sense, a unification
of both previous definitions.

DEFINITION 1 [13].We say that the family of elements{xr}r>0 ⊂ K is an ex-
ceptional family of elementsfor f : Rn → Rn, with respect to the convex cone
K ⊂ Rn, if and only if for every real numberr > 0 there exists a real number
µr > 0 such that the vectorur = f (xr)+ µrxr satisfies the following conditions:
(e1) ur ∈ K ∗,
(e2) 〈ur, xr 〉 = 0,
(e3) ‖xr‖ → +∞ asr →+∞ .

We say that the exceptional family of elements{xr }r>0 for f is regular if for any
r > 0, ‖xr‖ = r. The next result was proved in [13] using the topological degree
and the equivalence between the solvability of the problemNCP(f,K ) and the
solvability of the nonlinear equation

f (PK(x))+ x − PK(x) = 0 (2)

(known as the “normal equation”).
For the same result, we will give now another proof, much more simple based

on the equivalence between the solvability of the problemNCP(f,K ) and the
solvability of the nonlinear equation

x − PK(x − f (x)) = 0 (3)
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THEOREM 1. For any continuous functionf : Rn → Rn, there exists, either a
solution for the problemNCP(f,K ), or a regular exceptional family of elements
for f with respect toK .

Proof.Consider the function

8(x) = x − PK(x − f (x)) (4)

defined for anyx ∈ Rn. Using the properties (i) and (ii) of operatorPK we can
show that the problemNCP(f,K ) has a solution if and only if the equation

8(x) = 0 (5)

is solvable. We use the following notations:

Sr = {x ∈ Rn|‖x‖ = r}, Br = {x ∈ Rn|‖x‖ < r}
for anyr > 0 and denote byI the identity mapping onRn. Consider the homotopy:

H(x, t) = tx + (1− t)8(x);0 6 t 6 1. (6)

From the definition of8 we have

H(x, t) = x − (1− t)PK(x − f (x)); t ∈ [0,1] (7)

We use the topological degree and we apply thePoincaré–Böhl Theoremfor y = 0
and� = Br(∂� = Sr). We have the following two situations:

(A) There existsr > 0 such thatH(x, t) 6= 0 for any x∈ Sr and anyt ∈ [0,1].
In this case byPoincaré-Böhl Theoremwe have that deg(8,Br,0) =
deg(I, Br,0). Since deg(I, Br,0) = 1 we deduce that equation (5) has a
solution inBr , which implies that the problemNCP(f,K ) has a solution.

(B) For everyr > 0 there existxr ∈ Sr andtr ∈ [0,1] such that

H(xr, tr ) = 0. (8)

If tr = 0, from (6) we have that8(xr) = 0 and hence the problem
NCP(f,K ) has a solution.

We also remark thattr must be different from 1. Indeed, iftr = 1, using again (6)
we deduce thatxr = 0, which is impossible sincexr ∈ Sr . Hence, we can say that
either the problemNCP(f,K ) has a solution or for anyr > 0 there existsxr ∈ Sr
andtr ∈]0,1[ such thatH(xr, tr ) = 0. From (7) we have

xr − (1− tr )PK(xr − f (xr )) = 0 (9)

or

1

1− tr x
r = PK(xr − f (xr)). (10)
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BecauseK is a cone we have thatxr ∈ K . Applying the properties (i) and (ii) of
operatorPK we deduce,〈

1

1− tr x
r − (xr − f (xr )), y

〉
> 0 for all y ∈ K , (11)

and 〈
1

1− tr x
r − (xr − f (xr )), 1

1− tr x
r

〉
= 0. (12)

If we putµr = tr/1− tr in (11) and (12) we deduce

〈µrxr + f (xr ), y〉 > 0 for all y ∈ K , (13)

and

〈µrxr + f (xr ), xr〉 = 0. (14)

Considering (13), (14) and the facts that for anyr > 0, xr ∈ K and‖xr‖ = r, we
have that{xr}r>0 is a regular exceptional family of elements forf with respect to
K . 2
REMARK. We observe thatTheorem 1is valid even iff is defined only on the
coneK . Indeed, in this case we applyTheorem 1to the functiong : Rn → Rn

defined byg(x) = f (PK(x)) for everyx ∈ Rn.

An immediate consequence ofTheorem 1is the fact that iff : K → Rn is
continuous and without exceptional families of elements with respect toK , then
the problemNCP(f,K ) is solvable.

DEFINITION 2. We say thatf : K → Rn satisfiescondition (θ) if there exists
ρ > 0 such that for allx with ‖x‖ > ρ, there existsy ∈ K with ‖y‖ < ‖x‖ such
that〈x − y, f (x)〉 > 0.

THEOREM 2. Letf : K → Rn be a continuous function. Iff satisfies condition
(θ), then it is without regular exceptional families of elements and the problem
NCP(f,K ) has a solution.

Proof. Suppose thatf has a regular exceptional family of elements{xr}r>0 ⊂
K . We have

ur = f (xr )+ µrxr ∈ K ∗ for all r > 0, (15)

〈xr , ur〉 = 0 for all r > 0, (16)

and

‖xr‖ → +∞ asr →+∞ (17)
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Taker > 0 such that‖xr‖ > ρ. Sincef satisfies condition (θ), there existsyr ∈ K
such that‖yr‖ < ‖xr‖ and〈xr − yr, f (xr )〉 > 0. We have

06 〈xr − yr , f (xr )〉 = 〈xr − yr, ur − µ rx
r〉

= 〈xr − yr, ur〉 − µ r‖xr‖2+ µ r 〈yr, xr 〉
6 −µ r‖xr‖[‖xr‖ − ‖yr‖] < 0,

which is impossible. Hence, the functionf is without regular exceptional families
of elements with respect toK and applyingTheorem 1we obtain the last conclusion
of the theorem. 2

Condition (θ) contains as a particular case the classical Karamardian’s condi-
tion.

DEFINITION 3. [14] We say thatf : Rn → Rn satisfiesKaramardian’s condi-
tion on K if there exists a closed bounded setD ⊂ K such that for allx ∈ K\D
there existsy ∈ D such that〈x − y, f (X)〉 > 0.

PROPOSITION 3. If f : Rn → Rn satisfies Karamardian’s condition onK then
f satisfies condition (θ).

Proof. Let D ⊂ K be the set defined by Karamardian’s condition. SinceD

is bounded, then there existsρ > 0 such thatD ⊂ B̄ρ ∩ K . For anyx such that
‖x‖ > ρ there exists an elementy ∈ D (that is such that‖y‖ 6 ρ < ‖x‖) verifying
x − y, f (x)〉 > 0. Hence condition (θ) is satisfied. 2
Let ϕ : [0,+∞[→ [0,+∞[ be a function such that limt→+∞ ϕ(t) = +∞ and
u ∈ K an arbitrary element.

DEFINITION 4. We say thatf : K → Rn is asymptotically(u, ϕ)-monotone
if there exists a real numberρ > 0 (eventually sufficiently large) such that〈x −
u, f (x)− f (u)〉 > ‖x − u‖ϕ(‖x − u‖) for all x ∈ K with ‖x‖ > ρ
PROPOSITION 4. Any asymptotically(u, ϕ)-monotone operatorf : K → Rn

satisfies property (θ) with respect toK .
Proof.For everyx ∈ K with ‖x‖ > max(ρ, ‖u‖) we have

〈x − u, f (x)− f (u)〉 > ‖x − u‖ϕ(‖x − u‖)
which implies

〈x − u, f (x)〉 > 〈x − u, f (u)〉 + ‖x − u‖ϕ(‖x − u‖).
Since‖x‖ > ‖u‖ we have‖x − u‖ > 0 and

〈x − u, f (x)〉 > ‖x − u‖
[〈

x − u
‖x − u‖ , f (u)

〉
+ ϕ(‖x − u‖)

]
.



188 G. ISAC AND A. CARBONE

Considering foru fixed,f (u) as a continuous linear functional onRn and applying
Weierstrass’ Theoremwith respect to the compact setS+1 = {x ∈ K |‖x‖ = 1},
we deduce that there existsγ ∈ R such that〈x − u/‖x − u‖, f (u)〉 > γ for
any x ∈ R with ‖x‖ > max(ρ, ‖u‖). Since limt→+∞ ϕ(t) = +∞ we have that
there existsρ∗ > 0 such that‖x − u‖ > ρ∗ implies ϕ(‖x − u‖) > −γ , that is
〈x − u, f (x)〉 > 0. If, for anyx ∈ K satisfying‖x‖ > max(ρ∗ + ‖u‖, ρ), we take
y = u we have immediately thatf satisfies condition (θ) with respect toK . 2

Also, we may consider the following two generalizations of the (u, ϕ)-monotonicity.

DEFINITION 5. We say thatf : K → Rn is asymptotically(u, v, ϕ)-monotone,
if there existρ > 0 and v∈ K such that〈x−u, f (x)−f (v)〉 > ‖x−u‖ϕ(‖x−u‖)
for all x ∈ K with ‖x‖ > ρ.

DEFINITION 6. We say thatf : K → Rn is asymptotically(u, g, ϕ)-monotone,
if there existρ > 0 and a functiong : K → Rn such that〈x − u, f (x)− g(u)〉 >
‖x − u‖ϕ(‖x − u‖) for all x ∈ K with ‖x‖ > ρ.

PROPOSITION 5. If f : K → Rn is an asymptotically(u, v, ϕ)-monotone or
(u, g, ϕ)-monotone function, thenf satisfies property (θ) with respect toK .

Proof.The proof is similar to the proof ofProposition 4 and we omit it. 2

THEOREM 6. If the functionf : K → Rn is continuous and there existsρ > 0
such that〈x, f (x)〉 > 0 for all x ∈ K with ‖x‖ > ρ, thenf satisfies condition(θ)
with respect toK and the problemNCP(f,K ) has a solution.

Proof.We applyTheorem 2takingy = 0 for all x ∈ K with ‖x‖ > ρ. 2

THEOREM 7. If for the continuous functionf : K → Rn there existsρ > 0
such that for allx ∈ K with ‖x‖ = ρ there existsu with ‖u‖ < ρ such that
〈x − u, f (x)〉 > 0, then the problemNCP(f,K ) has a solution.

Proof. For all x ∈ K with ‖x‖ > ρ denote byTρ(x) the radial projection onto
S+ρ = {x ∈ K |‖x‖ = ρ}, i.e.,Tρ(x) = ρ/‖x‖. Consider the functiong : K → Rn

defined by

g(x) =
{
f (x), if ‖x‖ 6 ρ
f (Tρ(x))+ ‖x − Tρ(x)‖x, if ‖x‖ > ρ.
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For anyx ∈ K with ‖x‖ > ρ there existsλx > 0 such thatx = λxTρ(x). By
assumption, forTρ(x) there existsuxρ with ‖uxρ‖ < ρ such that

〈Tρ(x)− uxρ, f (Tρ(x))〉 > 0. (18)

〈x − λxuxρ, g(x)〉 = 〈λxTρ(x)− λxuxρ, g(x)〉
= 〈λxTρ(x)− λxuxρ, f (Tρ(x))+ ‖x − Tρ(x)‖x〉
= λx〈Tρ(x)− uxρ, f (Tρ(x))〉 + ‖x − Tρ(x)‖‖x‖2 − ‖x − Tρ(x)‖〈λxuxρ, x〉
> ‖x − Tρ(x)‖[‖x‖2 − λxuxρ, x〉]
> ‖x − Tρ(x)‖[λ2

x‖Tρ(x)‖2 − λ2
x‖uxρ‖ ‖Tρ(x)‖

= ‖x − Tρ(x)‖λ2
x‖Tρ(x)‖[‖Tρ(x)‖ − ‖uxρ‖] > 0.

If for given x we takey = λxuxρ we have thatg satisfies condition (θ) with respect
to K . Because we can show thatg is continuous, applyingTheorem 2we deduce
that the problemNCP(g,K ) has a solutionx∗ ∈ K . The solutionx∗ is such that
‖x∗‖ 6 ρ. Indeed, if‖x∗‖ > ρ we must have

〈x∗ − λx∗ux∗ρ , g(x∗)〉 > 0 (19)

or

〈λx∗ux∗ρ − x∗, g(x∗)〉 < 0 (20)

which is impossible, because the problemNCP(g,K ) being equivalent to a vari-
ational inequality we have

〈λx∗ux∗ρ − x∗, g(x∗)〉 > 0

Hence,‖x∗‖ 6 ρ and in this case from the definition ofg we haveg(x∗) = f (x∗),
that is,x∗ is a solution of the problemNCP(f,K ). 2
The next result is close toTheorem 6. We say that a mappingT : K → Rn satisfies
condition(β) if there exists a real numberβ(T ) > 0 such that for allx ∈ K with
‖x‖ > 1 we have‖T (x)‖ 6 β(T )‖x‖.

EXAMPLES
(1) Any linear continuous operatorT : Rn→ Rn satisfies condition (β).
(2) If T : K → Rn satisfies Lipschitz property, thenT satisfies property (β).

Indeed, letx0 ∈ K a particular element. SinceT is a Lipschitzian mapping,
there existsk > 0 such that‖T (x)− T (x0)‖ 6 k‖x − x0‖ for anyx ∈ K .
It follows that‖T (x)‖ 6 ‖T (x) − T (x0)‖ + ‖T (x0)‖ 6 k‖x‖ + k‖x0‖ +
‖T (x0)‖. If we setβ0 = k‖x0‖ + ‖T (x0)‖ we have‖T (x)‖ 6 k‖x‖ + β0,
which implies for anyx with ‖x‖ > 1 that‖T (x)‖ 6 k‖x‖ + β0‖x‖ =
(k + β0)‖x‖. Hence,T satisfies condition (β) with β(T ) = k + β0.
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THEOREM 8. Let f : K → Rn be a continuous function andT : K → Rn a
mapping satisfying condition (β). If the following assumptions are satisfied:

(1) lim‖x‖→+∞ < f (x)− T (x), x > /‖x‖2 > k0 > 0,
(2) β(T ) < k0,

Then there existsρ > 1 such that〈f (x), x〉 > 0 for all x ∈ K with ‖x‖ > ρ.
Moreover, the problemNCP(f,K ) has a solutionx∗ ∈ K such that‖x∗‖ 6 ρ.

Proof.Take anε > 0 such thatβ(T )+ε < k0. From assumption (1) there exists
ρ > 1 such that for allx ∈ K with ‖x‖ > ρ we have

〈f (x)− T (x), x〉
‖x‖2 > k0− ε

which implies

〈f (x)− T (x), x〉 > (k0− ε)‖x‖2

and finally,

〈f (x), x〉 > 〈T (x), x〉 + (k0− ε)‖x‖2.

From the last inequality we obtain
〈f (x), x〉 > −β(T )‖x‖2 + (k0 − ε)‖x‖2 = ‖x‖2(−β(T ) − ε + k0) > 0 for all
x ∈ K with ‖x‖ > ρ.

Applying Theorem 6we obtain that the problemNCP(f,K ) has a solution
x∗ ∈ K . To finish, it is sufficient to observe that because〈f (x), x〉 > 0 for all
x ∈ K with ‖x‖ > ρ, we must have‖x∗‖ 6 ρ. 2
REMARK. Theorem 8is applicable in the following two cases.

(a) f (x) = T (x)+ a x + b, wherea > 0, b ∈ Rn is an arbitrary vector andT
satisfies condition (β) with β(T ) < a.

(b) f (x) = T (x) + Lx + b, whereb ∈ Rn is an arbitrary vector,L is a linear
operator fromRn into Rn such that〈Lx, x〉 > k0‖x‖2 for anyx ∈ K andT
satisfies condition (β) with β(T ) < k0.

Also, Theorem 8has an interesting application to the Linear Complementarity
Problem.

PROPOSITION 9. Let A be ann × n-matrix such thatA = A1 + A2 and the
following assumptions are satisfied:

(1) 〈A2x, x〉 > k0‖x2‖ with k0 > 0 for anyx ∈ K ,
(2) ‖A1‖ < k0, where‖A1‖ is the norm ofA1 considered as linear operator.

Then the problemLCP(A, b,K ) has a solution for anyb ∈ Rn.
Proof. It is sufficient to remark that all assumptions ofTheorem 8are satisfied

for the mappingf (x) = A1x + A2x + b. 2
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4. Application to fixed point theory

Now, we applyTheorem 7to thefixed point theory. The next result is related to the
classicalAltman’s fixed point theorem[1, 10].

THEOREM 10 (Generalization of Altman’s Theorem).If for the continuous map-
ping h : K → K there existsρ > 0 such that for allx ∈ K with ‖x‖ = ρ there
existsu ∈ K with ‖u‖ < ρ such that〈x − u, x − h(x)〉 > 0, then the mappingh
has a fixed point inK .

Proof.From the complementarity theory it is known that the mappingh : K →
K has a fixed point inK if and only if the problemNCP(I − h,K ) has a solution.
Applying Theorem 7,the theorem follows. 2

The next corollary can be considered as the analogue for cones of the well
knownAltman’s fixed point theorem[1, 10].

COROLLARY 11. If for the continuous functionh : K → K there existsρ > 0
such that for allx ∈ K with ‖x‖ = ρ we have

‖x‖2 > 〈x, f (x)〉,
thenh has a fixed point inK .

REMARK. The assumption used inTheorem 10is more flexible than the assump-
tion used in [10].

5. Complementarity problems withP0-functions

Now, we will study the problemNCP(f,Rn+) associated with aP0-function f :
Rn+ → Rn. The class ofP0-function (P -function) were introduced by J.J. Moré and
W. Rheinboldt [20] as a natural extension of the notion of a square matrix to be a
P0-matirix (P-matrix), i.e., if all its principal minors are nonnegative (positive).

We recall the definition. A functionf : D ⊂ Rn → Rn is aP0-function (P -
function) onD if for all x, y ∈ D, x 6= y, there exists an indexi = i(x, y), such
thatxi 6= yi and(xi − yi)(fi(x)− fi(y)) > 0, ((xi − yi)(fi(x)− fi(y)) > 0).

Considering the problemNCP(f,Rn+), denote byF the set of all feasible
solutions, i.e.,F = {x ∈ Rn+|fi(x) > 0, for all i = 1,2, . . . , n}. We say that
u ∈ F is strictly feasibleif fi(u) > 0, for all i = 1,2, . . . , n. In [19], J.J. Moré
showed that iff is a monotone mapping, i.e.,〈x − y, f (x) − f (y)〉 > 0 for all
x, y ∈ Rn+) andF contains at least one strictly feasible point, thenNCP(f,Rn+)
has a solution. This result cannot be extended to the class ofP0-functions (even
P -function) as the following simple example shows. Letf : R2→ R2 be defined
by f1(x) = ψ(x1)+ x2 andf2(x) = x2, whereψ : R→ R is

ψ(t) = −1

2
e−t .
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The functionf is a continuousP -function, andF = {(x1, x2) ∈ R2+|x1 > 0, x2 >
1
2 e
−x1}.
The pointu = (0,1) is a strictly feasible point, but the only point which satisfies

the complementarity condition associated withf is (0,0), which is not a solution
of NCP(f,Rn+) since(0,0) /∈ F .

The next result shows that the problemNCP(f,Rn+) associated to aP0-function
is solvable if the setF containsn points of a particular form.

THEOREM 12. Letf : Rn+ → Rn be aP0-function. If the feasible setF contains

n pointse(j), j = 1,2, . . . , n such thate(j)j > 0 ande(j)i = 0 for all i 6= j , then
the problemNCP(f,Rn+) has a solution.

Proof. If, for a particularj, fj (e(j)) = 0 we have thate(j) is a solution of the
problemNCP(f,Rn+). Hence, we can suppose that for everyj ∈ {1,2, . . . , n}
fj (e

(j)) > 0. The theorem will be proved, if we show thatf is without exceptional
families of elements with respect toRn+. Indeed, suppose thatf has an exceptional
family of elements{xr}r>0 ⊂ Rn+. Because the particularities of the coneRn+ we
have for{xr}r>0 the following properties:

(i1) ‖xr‖ → +∞ asr →+∞,
(i2) for everyr > 0 there existsµr > 0 such that

(a) fi(xr ) = −µrxri , if xri > 0,
(b) fi(xr ) > 0, if xri = 0.

By property (i1) there exists an indexr > 0 such that

‖xr‖ >
√√√√ n∑

j=1

(e
(j)

j )
2. (21)

From (21) we have that there existsj0 ∈ {1,2, . . . , n} such thatxrj0 > e
(j0)

j0
. We

observe that

xr 6= e(j0) = (0,0, . . . , e(j0)j0
,0,0, . . . ,0). (22)

Sincef is aP0-function, there existsi = i(xr , e(j0)) such thatxri 6= e(j0)i and

(xri − e(j0)i )(fi(x
r)− fi(e(j0))) > 0. (23)

If i = j0 then we have

(xrj0 − e(j0)j0
)(fj0(x

r )− fj0(e(j0))) < 0.

which is a contradiction of (23).
If i 6= j0 then we havee(j0)i = 0 and xri > 0, which imply again

(xri − e(j0)i )(fi(x
r)− fi(e(j0))) < 0.
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The last inequality is also a contradiction of (23). We conclude thatf is without
exceptional families of elements with respect toRn+, and byTheorem 1the problem
NCP(f,Rn+) has a solution. 2

6. Application to the study of Generalized Linear Complementarity Problem

Theorem 12can be used to extend toP0-functions the main existence theorem for
the Generalized Linear Complementarity Problem(known as theVertical Linear
Complementarity Problem)proved in [2].

We recall the definition of this problem. By a vertical block matrixM of type
(m1,m2, . . . , mn), we mean a matrix

M =



M1

M2
...

Mj

...

Mn


where thej-th blockMj has ordermj × n. Thus form =∑n

j=1 mj the matrixM
is of orderm× n. Let q be a vector inRm partitioned conformably withM, i.e.,

q =



q1

q2

...

qj

...

qn


with qj ∈ Rmj .

The Generalized Linear Complementarity Problem (associated withM andq),
denoted byGLCP(M,q), is to findz ∈ Rn such that:

GLCP(M, q) :
{
z > 0,Mjz + qj > 0mj and

zj
∏mj
i=1(M

jz + qj )i = 0(j = 1,2, . . . , n)

where 0mj is the null vector inRmj . This clearly agrees with the Linear Comple-
mentarity Problem whenmj = 1 and Mj is the j-th row ofM(j = 1,2, . . . , n).
The problemGLCP(M,q) was defined in [4] and it has been studied recently in [2,
5, 6, 17, 22–24].

We recall now some notions on rectangular matrices. LetM be a vertical block
matrix of type(m1,m2, . . . , mn). An n × n submatrixN of M is called arep-
resentative submatrixif its j-th row is drawn from thej-th block,Mj of M. The
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properties ofM will be based upon properties of its representative submatrices.
Having this concept, we can talk about principal submatrices of the rectangular
matrix M. Obviously, a vertical block matrixM of type (m1,m2, . . . , mn) has∏n
j=1 mj representative submatrices.
Let M be a vertical block matrix of type(m1,m2, . . . , mn). A principal sub-

matrix of M is a principal submatrix of a representative submatrix ofM. The
determinant of such a matrix is aprincipal minor of M. A vertical block matrix
M of type (m1,m2, . . . , mn) is called aP0-matrix (P-matrix) if and only if all its
principal minors are nonnegative (strictly positive).

The next result is an existence theorem for the problemGLCP(M,q) whenM
is aP0-matrix.

THEOREM 13. LetM be aP0-vertical block matrix of type(m1,m2, . . . , mn)

and q ∈ Rm a vector partitioned conformably withM,m = ∑n
j=1 mj . Assume

that there existsn vectorsx(l) = (xlk)l = 1,2, . . . , n, k = 1,2, . . . , n such that
for eachl = 1,2, . . . , n

xlk = 0 for k 6= l, xll > 0 and

min16i6mj {(Mjx(l))i + qji } > 0, for j = 1,2, . . . , n.

(24)

Then the problem GLCP(M,q) has a solution.
Proof.Consider the piecewise linear functionf : Rn→ Rn defined as

fj (x) = min
l6i6mj

{(Mjx)i + qji }, j = 1,2, . . . , n.

Clearly, the solvability ofGLCP(M,q) is equivalent to the solvability of the prob-
lemNCP(f,Rn+). As already observed by A.A. Ebiefung [5], the assumption on
M implies thatf is a P0-function, moreover condition (24) implies that the as-
sumptions ofTheorem 12hold for f defined above ande(1) = x(1) · · · e(n) = x(n).
Hence the result follows fromTheorem 12. 2
REMARK. If M is aP -vertical block matrix this problem has been solved in [4]
in the case that the feasible set is non-empty. It is known that ifM is aP -matrix,
then the solution is unique [19]. With a different technique, in 1989, in his Ph.D.
Thesis, B. P. Szanc [22] proved that the existence result, for aP -vertical block
matrix, follows from the fact that the functionf is a non degenerateP -function.
Theorem 13is a more general result.
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