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Abstract. Using the topological degree and the concept of exceptional family of elements for a

continuous function, we prove a very general existence theorem for the nonlinear complementarity
problem. This result is an alternative theorem. A generalization of Karamardian's condition and the
asymptotic monotonicity are also introduced. Several applications of the main results are presented.
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1. Introduction

Initially, a notion of “exceptional family of elements” for a continuous function was
introduced in 1984 by T. E. Smith, using a special property of projection operator
onto a closed convex set in the Euclidean sp&e <, >) [21]. Recently, using

the topological degree, a more general notiomxafeptional family of elementgas
introduced by G. Isac, V. Bulavski and V. V. Kalashnikov [11, 13]. Using this no-
tion, in [11] are presented soraéternative existence theorerits complementarity
problems. A consequence of these results is the fact that, given a closed convex
coneK in R" and a continuous functiofi : R* — R”, to conclude that the comple-
mentarity problenC P ( f, K) associated witlf andK has a solution, it is sufficient

to show thatf is without exceptional families of elements with resp€cit follows

that it is interesting to know under what conditions a function is without exceptional
families of elements with respect to a convex cone. This problem has been studied
in[11-13, 25-27]. Now, in this paper we present some new conditions which imply
that a function is without exceptional families of elements. As applications, we
present a few existence theorems for complementarity problems, a generalization

* The results presented in this paper were obtained when the first author was visiting professor
(May-06-Jun 06-1997) at the University of Calabria (Cosenza, Italy) supported by the National
Council of Research of Italy.
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of Altman’s fixed point theorem and an existence result for the complementarity
problem associated to By-function and applicable to the study of the solvability

of the generalized complementarity problem in the sense of Cottle and Dantzig
[3, 10, 20, 22]. We note that the complementarity theory has many and interesting
applications in Optimization, Economics, Game Theory, Engineering, Mechanics
etc. [2, 3, 6, 9, 13, 21, 24]. Finally, we note that the concept of exceptional families
of elements recently, has been extended for variational inequalities in [25—-27]. The
results presented in this paper can be considered as a complementary part of the
papers [11-13], [25-27].

2. Preliminaries

Let (R", <, >) be the Euclidean space addc R" a closed pointed convex cone,
i.e.,K is a non-empty closed set satisfying the following properties:

k) K+ K C K

ko) \AK C K forall x e Ry,

ks) K N (=K) = {0}.
Whenever a closed pointed convex c#he- E is defined, we have an ordering on
E defined byx < y, ifand only if y — x € K. By definition the dual oK is

K*={y e R"|{(x,y) > Oforallx € K}

If D Cc R"is a closed convex set we denote the projection dntay Pp, that is,
for everyx € R", Pp(x) is the unique element i satisfying

lx — Pp(x)Il = min|lx — y|l.
yeD

In particular ifK c R" is a closed convex cone we denote the projection onto
K by P¢ .

We recall that the projectio®« onto a closed convex con¢€ is characterized
by the following properties. For evenye R", P« (x) is the (unique) element i
satisfying the following conditions:

(i) (Pgk(x)—x,y)>0forall y e K,

(i) (Px(x) —x, Pg(x)) =0.

If K andQ are two closed convex conesit, we say thak andQ aremutually
polar if K = Q°, whereQ? is thepolar of Q, that is,

Q%= {x e R"|(x,y) < Oforally € Q}
We will use the following classical result.

THEOREM (Moreau [16]).1f K and Q are two mutually polar convex cones in
the Euclidean spacéR”, <, >) and x, y, z € R”", then the following statements
are equivalent:

(i) z=x+y;xeK,yeQand{x,y) =0
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(iv) x = Pg(z) andy = Py(z).

If Q = K9, then by thebipolarity theoremit follows thatK = K = Q° and hence
K andQ are mutually polar.

By Moreau’s Theoreneach vectoz € R” has a unique representation of the
form

z=z"—27" (1)
wherezt = Pg(z) andz™ = — Pxo(z). (Note that—z~ is the orthogonal comple-
ment ofz ™).

We recall now the definition of thgeneral nonlinear complementarity problem.
Let K c R"” be a pointed closed convex cone afid K — R”, a function. The
nonlinear complementarity problem associate witandK is:

find x,. € K such that
NCP(f,K):{ f(x,) € K*and
(x4, f(x4)) = 0.

The existence of solution of this problem is not evident [3, 9, 19]. Because of this
fact, many authors have proposed several kinds of existence theorems [2, 3, 5, 7-9,
14, 18, 19]. For the importance and the applications of the pro¥erP ( f, K)
the reader is referred to [2, 3, 6, 9, 13, 21, 22]. Finally, in this paper we will use the
topological degree as it is presented in the book [15].

Let 2 be a bounded open subset®f andy € R" an arbitrary point. The
closureS2 is written Q and its boundaryg$2. We denote by’(2) the linear space
of continuous functions fron® into R™. If F € C(Q) andy € R” is such that
y € F(3%2), we denote by ded{, 2, y) thetopological degreassociated withF,
Qandy. If F,G € C(Q) we consider the homotop#l (x,t) = tG(x) + (1 —
HF(x),t €[0,1].

THEOREM (Poincaré-Bohl, [15])Let 2 C R" be an open bounded subset and
F, G € C(R2) two continuous mappings. Jf € R" is an arbitrary point satisfying
the condition

y € {H(x,t)|x € 9Q andt € [0, 1]}

then we have the following equaliteg(G, 2, y) = deq F, 2, y).
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3. Main results

Let (R", {,)) be the Euclidean space arfd: R" — R" a continuous function. In
the paper [11] are introduced the following notions.

We say that the family of point§x*},.q C Rf; is an exceptional family of
elements forf with respect tor’, if ||x"|| — +o0 asr — +oo, and for each
r > 0 there existg:, > 0 such that:

(fv) filx") = —p,x] if x7 >0

(f2) fi(x") = 0if x/ = 0.

If, the coneR’, is replaced by an arbitrary cone¢ C R™, then we replace the
notion defined above by the following:

We say that the family of points:"},.o C R" is an exceptional family of elements
for f, with respect tK if ||(x")"|| — +oo asr — +oo, and for each- > 0 the
point £ ((x")*) belongs to the open ray

O((x")758) ={y=&")" + s lu > 0}

wheres, = (x")™ — (x")™.

These notions were studied in [11, 13] and generalized in [25-27]. Using the
topological degree, in [11] and also in [13], it was proved that for any continuous
function f : R" — R”, there exists either a solution for the probléht” P (f, R})
(respectively forN C P(f, K)), or an exceptional family of elements fgt

In his Habilitation Thesis [13], V.V. Kalashnikov introduced the following defin-
ition, for an exceptional family of elements, which is, in some sense, a unification
of both previous definitions.

DEFINITION 1 [13].We say that the family of elemen{s”},.o C K is an ex-
ceptional family of elementar f : R" — R”", with respect to the convex cone
K < R”, if and only if for every real number > 0 there exists a real number
wu, > 0 such that the vectar, = f(x") + u,x" satisfies the following conditions:

(e1) u, € K*,

(e2) (ur, x") =0,

(e3) |x"|| = +o0 asr — +oo.

We say that the exceptional family of elemefits}, .o for f is regular if for any

r > 0, ||x"|| = r. The next result was proved in [13] using the topological degree
and the equivalence between the solvability of the probM@P (f, K) and the
solvability of the nonlinear equation

f(Pxk(x))+x— Px(x) =0 2

(known as the “normal equation”).

For the same result, we will give now another proof, much more simple based
on the equivalence between the solvability of the problE@P (f, K) and the
solvability of the nonlinear equation

x—Pg(x — f(x))=0 3
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THEOREM 1. For any continuous functiorf : R* — R”, there exists, either a
solution for the probleniVC P ( f, K), or a regular exceptional family of elements
for f with respect tK.

Proof. Consider the function

P (x) =x — Pg(x — f(x)) 4)

defined for anyx € R". Using the propertiesi and (i) of operator Px we can
show that the problenV C P (f, K) has a solution if and only if the equation

®(x) =0 ©)
is solvable. We use the following notations:

S, ={x e R'lIxll =r}, B, ={x e R"[llx|| <r}
foranyr > 0 and denote bythe identity mapping oR”. Consider the homotopy:

Hx,t)=tx+1-0)Px);0<r <L (6)
From the definition ofb we have

Hx,t) =x— A —-1)Px(x — f(x));1 €[0,1] (7)

We use the topological degree and we applyRbmcaré—Bohl Theorerfor y = 0
andQ = B,(0Q2 = S,). We have the following two situations:

(A) There exists: > 0 such that (x, t) # 0 for any xe S, and any € [0, 1].
In this case byPoincaré-Béhl Theoremwe have that dedf, B,,0) =
deq1, B,, 0). Since dedl, B,,0) = 1 we deduce that equation (5) has a
solution in B,, which implies that the problenvC P ( f, K) has a solution.
(B) Foreveryr > 0 there exisk” € S, and¢, € [0, 1] such that

H(x",t,)=0. (8)

If &, = 0, from (6) we have thatb(x") = 0 and hence the problem
NCP(f, K) has a solution.
We also remark that must be different from 1. Indeed, if = 1, using again (6)
we deduce that” = 0, which is impossible since” € S,. Hence, we can say that
either the problenvC P( f, K) has a solution or for any > 0 there exists” € S,
andz, €]0, 1] such thatd (x", t,) = 0. From (7) we have

X' = A =t)Pg(x" — f(x")) =0 €)

or

T = Pl = fe). (10)
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BecauseK is a cone we have that € K. Applying the propertiesi) and {i) of
operatorPg we deduce,

<1}txr—(xr—f(xr)),y>20f0rallyeK, (11)

and

l r r r r _0 12
<1_nx-—u — f(x"), X>— : (12)

1-1
If we putu, =¢./1— 1t in (11) and (12) we deduce

(ux"+ f(x"),y) = 0forally e K, (13)
and

(px" + f(x7), x") = 0. (14)

Considering (13), (14) and the facts that for any 0,x” € K and|x"|| = r, we
have that{x"},.¢ is a regular exceptional family of elements fpmwith respect to
K. O

REMARK. We observe thatheorem 1is valid even if f is defined only on the
coneK. Indeed, in this case we appkheorem 1to the functiong : R* — R”
defined byg(x) = f(Pg(x)) for everyx € R".

An immediate consequence @dheorem 1lis the fact that iff : K — R" is
continuous and without exceptional families of elements with respeit, tinen
the problemN C P (f, K) is solvable.

DEFINITION 2. We say thatf : K — R” satisfiescondition @) if there exists
o > 0 such that for alk with ||x|| > p, there existy € K with ||y|| < |x|| such
that(x —y, f(x)) > 0.

THEOREM 2. Let f : K — R” be a continuous function. }f satisfies condition
(©), then it is without regular exceptional families of elements and the problem
NCP(f, K) has a solution.
Proof. Suppose thay has a regular exceptional family of elemefits},.o C
K. We have

u, = f(x") + pu,x" e K*forallr > 0, (15)

(x",u,y =0forallr > 0, (16)
and

|x"|| = 400 asr — +oo an
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Taker > O such thafx"|| > p. Sincef satisfies conditiond), there existy, € K
such thaty, || < ||x"|| and{(x" — y,, f(x")) > 0. We have

0 < (xr - Vr f(xr» = <xr = YV, Uy — :urxr>
= (X" — yo, ) — X (s X7
< =X N = NIyl < O,

which is impossible. Hence, the functighis without regular exceptional families
of elements with respect t and applyingrheorem Iwve obtain the last conclusion
of the theorem. 0

Condition @) contains as a particular case the classical Karamardian’s condi-
tion.

DEFINITION 3. [14] We say thatf : R" — R” satisfiesKaramardian’s condi-
tion on K if there exists a closed bounded getc K such that for alk € K\D
there existy € D such thatx — y, f(X)) > 0.

PROPOSITION 3.1f f : R* — R” satisfies Karamardian’s condition df then
f satisfies conditiond).

Proof. Let D c K be the set defined by Karamardian's condition. Siice
is bounded, then there exists> 0 such thatb ¢ B, N K. For anyx such that
x|l > pthere exists an elemepte D (thatis such thaty| < p < ||x]|) verifying
x —y, f(x)) > 0. Hence conditiond) is satisfied. O

Let ¢ : [0, +oo[— [0, +oo[ be a function such that lim ., ¢(#) = +o0 and
u € K an arbitrary element.

DEFINITION 4. We say thatf : K — R" is asymptotically(u, ¢)-monotone
if there exists a real number > 0 (eventually sufficiently large) such that —
u, f(x) = f) = llx —ulle(lx —ul) forall x € K with [Ix|| > p

PROPOSITION 4. Any asymptoticallyu, ¢)-monotone operatorf : K — R”
satisfies propertyd) with respect tK.
Proof. For everyx € K with |x|| > max(p, ||«|) we have

(x —u, f() = f) 2 llx —ullelx — ul)
which implies

(x —u, f)) 2 (x —u, f@) + llx —ullolx — ul).

Since||x|| > |lu| we have||x — u| > 0 and

X —U
(x —u, fO)) = llx —ull [<7 f(u)> + o(lx — ull)] :

llx — ul
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Considering fou fixed, f (1) as a continuous linear functional & and applying
Weierstrass’ Theoremwith respect to the compact s&f = {x € K||x|| = 1},
we deduce that there exists € R such that(x — u/||x — ul|, f(u)) > v for
anyx € R with ||x]] > max(p, |lu]). Since lim_, ,» ¢(t) = +o0o we have that
there exists, > 0 such that|x — u|| > p. impliese(]lx — u|)) > —y, thatis
(x —u, f(x)) = 0. If, foranyx € K satisfying|x|| > max(p, + |lull, p), we take
y = u we have immediately thgt satisfies conditiond() with respect td<. O

Also, we may consider the following two generalizations of thex)-monotonicity.

DEFINITION 5. We say thatf : K — R" is asymptotically(u, v, ¢)-monotone
if there existo > 0 and ve K such thatx —u, f(x)— f()) > |lx —ulle(lx —ul)
forall x € K with ||x|| > p.

DEFINITION 6. We say thatf : K — R" is asymptotically(u, g, ¢)-monotone
if there existp > 0 and a functiorg : K — R” such thatix — u, f(x) — g(u)) >
lx —ulle(lx — ul)) for all x € K with ||x] > p.

PROPOSITIONGS. If f : K — R" is an asymptotically(u, v, ¢)-monotone or
(u, g, )-monotone function, thefi satisfies propertyd) with respect td.
Proof. The proof is similar to the proof dProposition 4 and we omitit. O

THEOREM 6. If the functionf : K — R” is continuous and there exists> 0
such that{x, f(x)) > Ofor all x € K with |x]| > p, then f satisfies condition)
with respect t&K and the problenivC P (£, K) has a solution.

Proof. We applyTheorem 2akingy = 0 for all x € K with ||x|| > p. O

THEOREM 7. If for the continuous functiory : K — R" there existsp > 0
such that for allx € K with ||x|| = p there exista: with ||u|| < p such that
(x —u, f(x)) = 0, then the problenivC P (f, K) has a solution.

Proof. For allx € K with ||x|| > p denote byr,(x) the radial projection onto
S; = {x e K|||x|| = p}, i.e.,T,(x) = p/|lx]|. Consider the functiog : K — R"
defined by

S, ifflxll <p
glx) = .
F(T,(x) + llx = T,(x)llx, if [lx]| > p.
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For anyx € K with |x|| > p there exists,, > 0 such thatt = A,7,(x). By
assumption, foff,(x) there exists:; with [lu7 || < p such that
(Tp(x) —uy, f(T,(x))) = 0. (18)
(x — Apuy, g(0)) = (A Tp(x) — Ayt g(x))
= (M Tp(x) — Auy, f(Tp(x)) + llx — Tp(x)1x)
= MlTp(x) —uy, f(Tp(x))) + llx — T,(0)|[lIx]” — [lx — Ty () [{Axu,, x)
Ilx = T, )Ll = Ay, )]
e = T, AN T, O = 22 | 1T, ()|
= lx = T,)IXZNT, I, )| — [[ur 11 > 0.

VoWV

If for given x we takey = ,u; we have thag satisfies conditiont) with respect
to K. Because we can show thais continuous, applyin@heorem 2ve deduce
that the problenVC P(g, K) has a solutiorx, € K. The solutionx, is such that
lx]l < p.Indeed, if||x.|| > p we must have

<X* - kx*u;*v g(x*)> > O (19)

or

<)‘x*u;* — X g(x*)> < O (20)

which is impossible, because the probldhd P (g, K) being equivalent to a vari-
ational inequality we have

(15 = x,, 8(x,)) = 0

Hence,||x.|| < p and in this case from the definition gfwe haveg(x.) = f(x.),
that is,x, is a solution of the problemVC P( f, K). O

The next result is close fbheorem 6We say that a mapping : K — R” satisfies
condition(pB) if there exists a real numbe(7T) > 0 such that for alk € K with
lxll = 1 we have|T (x)|| < B(T)|lx]l.

EXAMPLES

(1) Any linear continuous operatdr : R” — R” satisfies conditionf).

(2) If T : K — R" satisfies Lipschitz property, theh satisfies property (B
Indeed, letxy € K a particular element. Sincg s a Lipschitzian mapping,
there existg > 0 such that|T (x) — T (xo)|| < k||lx — xgl| for anyx € K.
It follows that |7 (x)[| < [I7'(x) — T (xo) [l + 1T (xo) | < kllxIl + kllxoll +
IT (xo)|I. If we setfo = kllxoll + 17 (xo) | we have|T (x)|| < kllx|l + Bo,
which implies for anyx with ||x| > 1 that||T(x)| < k|x|| + Bollx|| =
(k + Bo)llx|l. Hence,T satisfies conditiond) with 8(T) = k + Bo.
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THEOREM 8. Let f : K — R” be a continuous function anfl : K - R"” a
mapping satisfying conditiorgy. If the following assumptions are satisfied:
(D) iMpysiee < () = T(x),x > /|Ix]? = ko > O,
(2) B(T) < ko,
Then there existp > 1 such that{f(x),x) > Ofor all x € K with ||x]| > p.
Moreover, the problenv C P (f, K) has a solutionk, € K such that]|x, || < p.
Proof. Take are > 0 such thaB(T) +¢ < ko. From assumption (1) there exists
o > 1 such that for alk € K with || x|| > p we have

(f(x) =Tx), x)

1112

>kog—¢

which implies
(f () = T(x), x) > (ko — &)|x]|?
and finally,
(f (x), x) > (T (x), x) + (ko — &) I x|1%.

From the last inequality we obtain
(f(x),x) = =BM)|Ix|I> + (ko — &)|x[* = lIx*(=B(T) — & + ko) > O for all
x € K with ||x]| > p.

Applying Theorem 6we obtain that the probleWC P(f, K) has a solution
x, € K. To finish, it is sufficient to observe that becauggx), x) > 0 for all
x € K with ||x]| > p, we must havelx. || < p. O

REMARK. Theorem 8s applicable in the following two cases.

@ f(&x)=T(x)+ax+b,wherea >0, b € R" is an arbitrary vector and@
satisfies conditionq) with 8(T) < a.

(b) f(x) =T(x)+ Lx + b, whereb € R" is an arbitrary vectorL is a linear
operator fromR” into R” such that/Lx, x) > kol|x||* for anyx € K andT
satisfies conditiong) with 8(T) < ko.

Also, Theorem 8has an interesting application to the Linear Complementarity
Problem.

PROPOSITION 9. Let A be ann x n-matrix such thatA = A; + A, and the
following assumptions are satisfied:

(1) (Asx, x) > kollx?| with ko > Ofor anyx e K,

(2) 1ALl < ko, where||A.]| is the norm ofA, considered as linear operator.
Then the probleni.C P(A, b, K) has a solution for any € R".

Proof. It is sufficient to remark that all assumptionsTieorem &re satisfied
for the mappingf (x) = A1x + Asxx + b. O
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4. Application to fixed point theory

Now, we applyTheorem 7o thefixed point theory. The next result is related to the
classicalAltman’s fixed point theorenl, 10].

THEOREM 10 (Generalization of Altman’s Theoremij.for the continuous map-
ping s : K — K there existso > 0 such that for allx € K with ||x|| = p there
existsu € K with |lu|| < p such that{x — u, x — h(x)) > 0, then the mapping
has a fixed point ifK.

Proof. From the complementarity theory it is known that the mapgind —
K has a fixed point ifk if and only if the problemVC P (I — h, K) has a solution.
Applying Theorem 7the theorem follows. O

The next corollary can be considered as the analogue for cones of the well
known Altman’s fixed point theoreifd, 10].

COROLLARY 11. If for the continuous function : K — K there exists > 0
such that for allx € K with ||x|| = p we have

Ix1I? > (x, f(x)),
thenk has a fixed point ifK.

REMARK. The assumption used iheorem 10s more flexible than the assump-
tion used in [10].

5. Complementarity problems with Py-functions

Now, we will study the problenVC P (f, R'}) associated with &,-function f :
R — R". The class ofP;-function (P-function) were introduced by J.J. Moré and
W. Rheinboldt [20] as a natural extension of the notion of a square matrix to be a
Py-matirix (P-matrix), i.e., if all its principal minors are nonnegative (positive).

We recall the definition. A functiory : D ¢ R" — R" is a Py-function (P-
function) onD if for all x,y € D, x # y, there exists an index= i(x, y), such
thatx; # y: and(x; — y) (fi(x) — fi(y) = 0, ((xi — y) (fi(x) — fi(y)) > 0).

Considering the problenNC P (f, R’,), denote byF the set of all feasible
solutions, i.e..,F = {x € R}|fi(x) > O,foralli = 1,2,...,n}. We say that
u € F is strictly feasibleif f;(u) > 0, foralli = 1,2,...,n.In[19], J.J. Moré
showed that iff is a monotone mapping, i.€x — y, f(x) — f(y)) > 0 for all
x,y € R}) and.F contains at least one strictly feasible point, théa P(f, R"}.)
has a solution. This result cannot be extended to the clags-fifnctions (even
P-function) as the following simple example shows. Ifet R? — R? be defined
by f1(x) = ¥ (x1) + x2 and f>(x) = xp, whereyr : R — Ris

) = L
1//()——56 .
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The functionf is a continuousP-function, andF = {(x1, x2) € R§r|x1 >0,x >
1 e},
? The pointu = (0, 1) is a strictly feasible point, but the only point which satisfies
the complementarity condition associated withs (0,0), which is not a solution
of NCP(f,R") since(0,0) ¢ F.

The next result shows that the probleén@ P ( f, R, ) associated to &-function
is solvable if the sef contains: points of a particular form.

THEOREM 12. Let f : R, — R" be aPo-function. If the feasible seff contains
n pointse”, j = 1,2,... . n such thate’’ > 0ande;”’ = Oforall i # j, then
the problemN C P(f, R") has a solution.

Proof. If, for a particular j, f;(¢/)) = 0 we have that is a solution of the
problemNCP(f, R"). Hence, we can suppose that for evgne {1,2,... ,n}
fi(e¥) > 0. The theorem will be proved, if we show thais without exceptional
families of elements with respect Ry, . Indeed, suppose thdthas an exceptional
family of elements{x"},.o C R’.. Because the particularities of the cdr& we
have for{x"},.¢ the following properties:

(i) ||x"|| > +o0 asr — +o0,

(ip) for everyr > 0 there existg:, > 0 such that

(@) fitx") = —ppxl, ifxl >0,
(b) fix") =0, if x =0.
By property (i) there exists an index > 0 such that

[lx"

PGRE (21)
j=1

From (21) we have that there exisks € {1,2, ... ,n} such thatr, > ¢\, We
observe that '

X" # e =(0,0,....¢.0,0,....0). (22)
Since f is a Po-function, there exists = i (x", ¢'®) such thatc/ # ¢ and

(o — e (fi(x") = fi(e®)) > 0. (23)
If i = jothen we have

(7 = e (i) = fip(e®)) < 0.

which is a contradiction of‘gZS).
If i £ jothen we have:f"’ = 0 and ¥ > 0, which imply again

xf — e (fi(x") = fi(e)) < 0.
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The last inequality is also a contradiction of (23). We conclude fhat without
exceptional families of elements with respecRtb, and byTheorem Xhe problem
NCP(f,R%) has a solution. O

6. Application to the study of Generalized Linear Complementarity Problem

Theorem 1Zan be used to extend ®-functions the main existence theorem for
the Generalized Linear Complementarity Probldkmown as th¥ertical Linear
Complementarity Proble)proved in [2].

We recall the definition of this problem. By a vertical block mat¥ikof type
(mq, mo, ... ,m,), We mean a matrix

My
M,

M;
Mﬂ

where thg-th block M/ has ordewn; x n. Thus form = 3~_; m; the matrixM

is of orderm x n. Letg be a vector irR™ partitioned conformably with/, i.e.,

gt

P

q = q.j

qn

with ¢/ € R™/.

The Generalized Linear Complementarity Problem (associatedMviéimdg),
denoted byGLCR(M, g), is to findz € R" such that:

2>0,M/z+4’ >0, and

GLCP(M,q): mi 4 _
! i [[[Z1M/z+¢);i =0 =1,2,... ,n)

where @,; is the null vector inR™/. This clearly agrees with the Linear Comple-
mentarity Problem whem; = 1 and M is thej-th row of M(j = 1,2,... ,n).
The problenGLCR(M, ¢) was defined in [4] and it has been studied recently in [2,
5, 6,17, 22-24].

We recall now some notions on rectangular matrices M.dte a vertical block
matrix of type (mq, mo, ... ,m,). An n x n submatrix N of M is called arep-
resentative submatrii its j-th row is drawn from thg-th block, M/ of M. The
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properties ofM will be based upon properties of its representative submatrices.
Having this concept, we can talk about principal submatrices of the rectangular

matrix M. Obviously, a vertical block matriw/ of type (mq, my, ... ,m,) has
]_[';:l m; representative submatrices.
Let M be a vertical block matrix of typémny, m», ... ,m,). A principal sub-

matrix of M is a principal submatrix of a representative submatrixvVbfThe
determinant of such a matrix is@incipal minor of M. A vertical block matrix
M of type (mq, mo, ... ,m,) is called aPy-matrix (P-matrix) if and only if all its
principal minors are nonnegative (strictly positive).

The next result is an existence theorem for the probd®&CP(M, ¢) when M
is a Py-matrix.

THEOREM 13. Let M be a Py-vertical block matrix of typdmy, my, ... ,m,)

andg € R™ a vector partitioned conformably witht, m = >%_, m;. Assume

that there exista vectorsx” = (x})/ =1,2,... ,n,k =1,2,... ,n such that
foreachi =1,2,... ,n
x; = 0fork #1,x > 0and (24)

minlgigmi{(MjX(l))i +C]lj} > 0, forj =12 ...,n.

Then the problem GLCR{, ¢g) has a solution.
Proof. Consider the piecewise linear functigh: R” — R” defined as

fi(x) = Krpgirll/{(ij),- +q/},j=12...,n
Clearly, the solvability ofSLCP(M, q) is equivalent to the solvability of the prob-
lem NCP(f,R’). As already observed by A.A. Ebiefung [5], the assumption on
M implies that f is a Py-function, moreover condition (24) implies that the as-
sumptions ofTheorem 12hold for f defined above and® = x@ ... = x™,
Hence the result follows frorheorem 12. O

REMARK. If M is a P-vertical block matrix this problem has been solved in [4]
in the case that the feasible set is non-empty. It is known thét i$ a P-matrix,
then the solution is unique [19]. With a different technique, in 1989, in his Ph.D.
Thesis, B. P. Szanc [22] proved that the existence result, fBrvartical block
matrix, follows from the fact that the functiofi is a non degeneratB-function.
Theorem 13s a more general result.
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